Skip to main content

Transcriptional Regulators to Modify Secondary Metabolism

  • Chapter
Metabolic Engineering of Plant Secondary Metabolism

Abstract

Prospects to modify alkaloid production via genetic engineering of a single or a few enzymatic steps have been reviewed previously.1 The aim of this contribution is to discuss opportunities to modify secondary metabolism using transcriptional regulators. Transcription factors are proteins that regulate gene expression by binding to specific sequences in the upstream region or promoter of a gene and by stimulating the activity of the RNA polymerase II-containing transcription complex. Single transcription factors can regulate complex pathways involving numerous target genes. A notable example is muscle differentiation in animals, where either one of a set of myogenic bHLH transcription factors (MyoD, myogenin, Myf5, MRF4) in combination with the MADS-domain transcription factor MEF2 induce muscle cell differentiation and switch on numerous muscle-specific genes.2 Other examples include single homeodomain transcription factors in the fruit fly, that regulate complex pathways resulting in the determination of segment identity.3,4 In Arabidopsis thaliana, overexpression of the transcription factor CBF1 resulted in coordinate upregulation of a set of cold-regulated genes, and in increased freezing tolerance.5 These examples illustrate that single transcription factors can act as master regulators of complex developmental pathways, and can control the expression of a large number of target genes in a coordinate fashion. A general characteristic of secondary metabolic pathways is that the expression of the structural genes is coordinately regulated depending on cell type or in response to environmental stimuli. This coordinate control is most likely due to master regulators, and one can envisage that secondary metabolism can be modified by engineering the activity of such master switches. The following sections will briefly review the transcriptional regulation of the well-studied phenylpropanoid pathway and its flavonoid branch, and the less well-studied terpenoid indole alkaloid biosynthetic pathway. In the conclusions, perspectives for practical applications of transcription factors in engineering secondary metabolism will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verpoorte R, van der Heijden R, Memelink J. Plant biotechnology and the production of alkaloids: prospects of metabolic engineering. In: Cordell GA, (Ed) The Alkaloids vol 50. San Diego: Academic Press, 1998: 453–508.

    Google Scholar 

  2. Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 1996; 93: 9366–9373.

    Article  PubMed  CAS  Google Scholar 

  3. Lawrence PA, Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 1994; 78: 181–189.

    Article  PubMed  CAS  Google Scholar 

  4. Graba Y, Aragnol D, Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. BioEssays 1997; 19: 379–388.

    CAS  Google Scholar 

  5. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG et al. Arabidopsis CBFI overexpression induces COR genes and enhances freezing tolerance. Science 1998; 280: 104–106.

    Article  PubMed  CAS  Google Scholar 

  6. Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995; 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  7. Albert S, Delseny, Devic M. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 1997; 11: 289–299.

    Article  PubMed  CAS  Google Scholar 

  8. Wei N, Deng X-W. The role of the COP/DET/FUS genes in light control of Arabidopsis seedling development. Plant Physiol 1996; 112: 871–878.

    Article  PubMed  CAS  Google Scholar 

  9. Torii KU, Deng XW. The role of COP1 in light control of Arabidopsis seedling development. Plant, Cell and Environment 1997; 20: 728–733.

    Article  CAS  Google Scholar 

  10. Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 1996; 21: 327–335.

    PubMed  CAS  Google Scholar 

  11. Ang L-H, Chattopadhyay S, Wei N et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Molecular Cell 1998; 1: 213–222.

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto YY, Matsui M, Ang L-H et al. Role of COPI interactive protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell 1998; 10: 1083–1094.

    PubMed  CAS  Google Scholar 

  13. Mayer R, Raventos D, Chua N-H. detl, copi and cop9 mutations cause inappropriate expression of several gene sets. Plant Cell 1996; 8: 1951–1959.

    PubMed  CAS  Google Scholar 

  14. Bowler C, Yamagata H, Neuhaus G et al. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 1994; 8: 2188–2202.

    Article  PubMed  CAS  Google Scholar 

  15. Chamovitz DA, Deng X-W. The COP9 complex: a link between photomorphogenesis and general development. Plant, Cell and Environment 1997; 20: 734–739.

    Article  CAS  Google Scholar 

  16. Neuhaus G, Bowler C, Kern R et al. Calcium/calmodulin dependent and independent phytochrome signal transduction pathways. Cell 1993; 73: 937–952.

    Article  PubMed  CAS  Google Scholar 

  17. Bowler C, Neuhaus G, Yamagata H et al. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 1994; 77: 73–82.

    Article  PubMed  CAS  Google Scholar 

  18. Roth BA, Goff SA, Klein TM et al. Cl-and R-dependent expression of the maize Bzl gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell 1991; 3: 317–325.

    PubMed  CAS  Google Scholar 

  19. Moyano E, Martinez-Garcia JF, Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 1996; 8: 1519–1532.

    PubMed  CAS  Google Scholar 

  20. Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins.. Plant Cell 1997; 9: 611–625.

    PubMed  CAS  Google Scholar 

  21. Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet 1997; 13: 67–73.

    Article  PubMed  CAS  Google Scholar 

  22. de Pater S, Pham K, Memelink J et al. RAP-1 is an Arabidopsis MYC-like R protein homologue, that binds to G-box sequence motifs. Plant Mol Biol 1997; 34: 169–174.

    Article  PubMed  Google Scholar 

  23. Menkens AE, Schindler U, Cashmore AR. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 1995; 20: 506–510.

    Article  PubMed  CAS  Google Scholar 

  24. Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev 1992; 6: 864–875.

    Article  PubMed  CAS  Google Scholar 

  25. Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 1994; 16: 123–132.

    CAS  Google Scholar 

  26. Lloyd AM, Walbot V, Davis RW. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and CI. Science 1992; 258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  27. Bradley JM, Davies KM, Deroles SC et al. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J 1998; 13: 381–392.

    Article  CAS  Google Scholar 

  28. Quattrocchio F, Wing JF, van der Woude K et al. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 1998; 13: 475–488.

    Article  PubMed  CAS  Google Scholar 

  29. Ludwig SR, Wessler SR. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell 1990; 62: 849–851.

    Article  PubMed  CAS  Google Scholar 

  30. de Vetten N, Quattrocchio F, Mol J et al. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 1997; 11: 1422–1434.

    Article  PubMed  Google Scholar 

  31. McCarthy DR, Carson CB, Stinard PS et al. Molecular analysis of viviparous-1: an abscisic acid insensitive mutant of maize. Plant Cell 1989; 1: 523–532.

    Google Scholar 

  32. Hattori T, Vasil V, Rosenkrans L et al. The Viviparous-I gene and abscisic acid activate the Cl regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 1992; 6: 609–618.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki M, Kao CY, McCarty DR. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 1997; 9: 799–807.

    PubMed  CAS  Google Scholar 

  34. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251: 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  35. Gu W, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R. Binding and supppression of the Myc transcriptional activation domain by p107. Science 1994; 264: 251–254.

    Article  PubMed  CAS  Google Scholar 

  36. Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell 1992; 70: 375–387.

    Article  PubMed  CAS  Google Scholar 

  37. Löscher B, Cristenson E, Litchfield DW et al. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 1990; 344: 517–522.

    Article  Google Scholar 

  38. Myrset AH, Bostad A, Jamin N et al. DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. EMBO J 1993; 12: 4625–33.

    PubMed  CAS  Google Scholar 

  39. Oelgeschläger M, Janknecht R, Krieg J et al. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 1996; 15: 2771–2780.

    PubMed  Google Scholar 

  40. Dai P, Akimaru H, Tanaka Y et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev 1996; 10: 528–540.

    Article  PubMed  CAS  Google Scholar 

  41. Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  42. Schulze-Lefert P, Dangl JL, Becker-André M et al. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 1989; 8: 651–656.

    PubMed  CAS  Google Scholar 

  43. Schulze-Lefert P, Becker-André M, Schulz W et al. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell 1989; 1: 707–714.

    PubMed  CAS  Google Scholar 

  44. Dron M, Clouse SD, Dixon RA et al. Glutathione and fungal elicitor regulation of a plant defense gene product in electroporated protoplasts. Proc Natl Acad Sci USA 1988; 85: 6738–6742.

    Article  PubMed  CAS  Google Scholar 

  45. Lois R, Dietrich A, Hahlbrock K et al. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 1989; 8: 1641–1648.

    PubMed  CAS  Google Scholar 

  46. Becker-André M, Schulze-Lefert P, Hahlbrock K. Structural comparison, modes of expression and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato. J Biol Chem 1991; 266: 8551–8559.

    PubMed  Google Scholar 

  47. Weisshaar B, Armstrong GA, Block A et al. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J 1991; 10: 1777–1786.

    PubMed  CAS  Google Scholar 

  48. Hartmann U, Valentine WJ, Christie JM et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 1998; 36: 741–754.

    Article  PubMed  CAS  Google Scholar 

  49. Sablowski RWM, Moyano E, Culianez-Macia FA et al. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 1994; 13: 128–137.

    PubMed  CAS  Google Scholar 

  50. Feldbrügge M, Sprenger M, Hahlbrock K et al. PcMYB 1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit. Plant J 1997; 11: 1079–1093.

    Article  PubMed  Google Scholar 

  51. Dröge-Laser W, Kaiser A, Lindsay WP et al. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J 1997; 16: 726–738.

    Article  PubMed  Google Scholar 

  52. da Costa e Silva O, Klein L, Schmelzer E et al. BPF-1, a pathogen-induced DNA binding protein involved in the plant defense response. Plant J 1993; 4: 125–135.

    Article  Google Scholar 

  53. Mooney M, Desnos T, Harrison K et al. Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J 1995; 7: 333–339.

    Article  CAS  Google Scholar 

  54. Grotewold E,Chamberlin M, Snook M et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 1998; 10: 721–740.

    PubMed  CAS  Google Scholar 

  55. Moreno PRH, van der Heijden R, Verpoorte R. Cell and tissue cultures of Catharanthus roseus: A literature survey. Plant Cell Tiss Org Cult 1995; 42: 1–25.

    Article  Google Scholar 

  56. Aerts RJ, Gisi D, De Carolis E et al. Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 1994; 5: 635–643.

    Article  CAS  Google Scholar 

  57. Gantet P, Imbault, Thiersault M et al. Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 1998; 39: 220–225.

    Article  CAS  Google Scholar 

  58. Meijer AH, Verpoorte R, Hoge JHC. Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res 1993; 3: 145–164.

    Google Scholar 

  59. Aerts RJ, De Luca V. Phytochrome is involved in the light-regulation of vindoline biosynthesis in Catharanthus. Plant Physiol 1992; 100: 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  60. Kutchan TM, Hampp N, Lottspeich F et al. The cDNA clone for strictosidine synthase from the higher plant Rauwolfia serpentine. FEBS Lett 1988; 237: 40–44.

    Article  PubMed  CAS  Google Scholar 

  61. McKnight TD, Roessner CA, Devagupta R et al. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucl Acids Res 1990; 18: 4939.

    Article  PubMed  CAS  Google Scholar 

  62. Pasquali G, Goddijn OJM, de Waal A et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 1992; 18: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  63. Bracher D, Kutchan TM. Strictosidine synthase from Rauwolfia serpentina: analysis of a gene involved in indole alkaloid biosynthesis. Arch Bioch Biophys 1992; 294: 717–723.

    Article  CAS  Google Scholar 

  64. Pasquali G. Regulation of the terpenoid indole alkaloid biosynthetic gene strictosidine synthase from Catharanthus roseus. Ph D thesis 1997; Leiden University, The Netherlands.

    Google Scholar 

  65. De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of a cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa carboxylase. Proc Natl Acad Sci USA 1989; 86: 2582–2586.

    Article  PubMed  Google Scholar 

  66. Goddijn OJM, Lohman FP, de Kam RJ et al. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Mol Gen Genet 1994; 242: 217–225.

    Article  PubMed  CAS  Google Scholar 

  67. Goddijn OJM, de Kam RJ, Zanetti A et al. Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 1992; 18: 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  68. Nicoloso FT. Influence of cell proliferation and phosphate on indole alkaloid metabolism in cultured Catharanthus roseus cells. Ph D thesis 1994; Leiden University, The Netherlands.

    Google Scholar 

  69. Roewer IA, Clottier N, Nessler CL et al. Transient induction of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) genes in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 1992; 11: 86–89.

    Article  CAS  Google Scholar 

  70. Lòpez-Meyer M, Nessler CL. Tryptophan decarboxylase is encoded by two autononously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant) 1997; 11: 1167–1175.

    Article  Google Scholar 

  71. Meijer AH, Lopes Cardoso MI, Voskuilen JT et al. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 mono-oxygenases in plants. Plant J 1993; 4: 47–60.

    Article  PubMed  CAS  Google Scholar 

  72. Lopes Cardoso MI, Meijer AH, Rueb S et al. A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1. Mol Gen Genet 1997; 256: 674–681.

    CAS  Google Scholar 

  73. Ouwerkerk PBF, Memelink J. Elicitor-responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 1999; 39: 129–136.

    Article  PubMed  CAS  Google Scholar 

  74. Gubler F, Kalla R, Roberts JK et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI a-amylase gene promoter. Plant Cell 1995; 7: 1879–1891.

    PubMed  CAS  Google Scholar 

  75. Yang Y, Klessig DF. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci USA 1996; 93: 14972–14977.

    Article  PubMed  CAS  Google Scholar 

  76. Wang Z-Y, Kenigsbuch D, Sun L et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 1997; 9: 491–507.

    PubMed  CAS  Google Scholar 

  77. Goddijn OJM, Pennings EJM, van der Helm P et al. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 1995; 4: 315–323.

    Article  PubMed  CAS  Google Scholar 

  78. Canel C, Lopes-Cardoso IM, Whitmer S et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 1998; 205: 414–419.

    Article  PubMed  CAS  Google Scholar 

  79. Lloyd AM, Schena M, Walbot V et al. Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 1994; 266: 436–439.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Memelink, J., Menke, F.L.H., Van Der Fits, L., Kijne, J.W. (2000). Transcriptional Regulators to Modify Secondary Metabolism. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics