Skip to main content

Metabolic Engineering of Crops with the Tryptophan Decarboxylase of Catharanthus Roseus

  • Chapter
Metabolic Engineering of Plant Secondary Metabolism

Abstract

A wide variety of plant families produce aromatic and indole amines via the decarboxylation of their respective amino acids. These reactions which are catalyzed by aromatic amino acid decarboxylases are commonly the first steps in the biosynthesis of many thousands of different plant alkaloids, which have a number of important physiological effects. In order to create crops that make useful alkaloids, genetic engineering methods for the production and accumulation of aromatic and indole amines need to be developed. This report describes the results of several transformation experiments to express the tryptophan decarboxylase gene in different species of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 1989; 86: 2582–2586.

    Article  PubMed  Google Scholar 

  2. Goddijn OJ, Lohman FP, de Kam RJ et al. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Mol Gen Genet 1994; 24: 217–225.

    Article  Google Scholar 

  3. Noé W, Mollenschott C, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures. Purification, molecular and kinetic data of the homogeneous protein. Plant Mol Biol 1984; 3: 281–288.

    Article  Google Scholar 

  4. Facchini PJ, De Luca V. Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from Opium poppy. Phytochemistry 1995; 39: 1119–1125.

    Article  Google Scholar 

  5. Lopez-Meyer M, Nessler CL. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J 1997; 11: 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  6. Facchini PJ, De Luca V. Differential and tissue-specific expression of a gene family fortyrosine/dopa decarboxylase in opium poppy. J Biol Chem 1994; 269: 26684–26690.

    PubMed  CAS  Google Scholar 

  7. Maldonado-Mendoza 1E, Lopez-Meyer M, Galef JR et al. Molecular analysis of a new member of the Opium Poppy Tyrosine/3,4-dihydroxyphenylalanine decarboxylase gene family. Plant Physiol 1996; 110: 43–49.

    Article  Google Scholar 

  8. Kawalleck P, Keller H, Hahlbrock K et al. A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. J Biol Chem 1993; 268: 2189–2194.

    PubMed  CAS  Google Scholar 

  9. Trezzini GF, Horrichs A, Somssich IE. Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Mol Biol 1992; 21: 385–389.

    Article  Google Scholar 

  10. Marques IA, Brodelius PE. Elicitor-induced L-tyrosine decarboxylase from plant cell suspension cultures. Plant Physiol 1988; 88: 46–51.

    Article  PubMed  CAS  Google Scholar 

  11. Chapple CCS. M.Sc thesis. University of Guelph, Ontario, Canada.

    Google Scholar 

  12. Tocher RD, Tocher CS. Dopa decarboxylase in Cytisus scoparius. Phytochemistry 1972; 11: 1661.

    Article  CAS  Google Scholar 

  13. Facchini PJ, De Luca V. Phloem-specific expression of Tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 1995; 7: 1811–1821.

    PubMed  CAS  Google Scholar 

  14. Noé W, Berlin J. Induction of de novo synthesis of tryptophan decarboxylase in cell suspensions of Catharanthus roseus. Planta 1985; 166: 500–504.

    Article  Google Scholar 

  15. Knobloch KH, Hansen B, Berlin J. Medium induced formation of indole alkaloids and concomitant changes of interrelated enzyme activities in cell suspension cultures of Catharanthus roseus. Z Naturforsch Teil C 1981; 36: 40–43.

    Google Scholar 

  16. Eilert U, De Luca V, Constabel F et al. Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase in cell suspension cultures of Catharanthus roseus. Arch Biochem Biophys 1987; 254: 491–497.

    Article  PubMed  CAS  Google Scholar 

  17. Alvarez Fernandez J, Kurz WGW, Owen TG et al. Immunological detection and quantitation of tryptophan decarboxylase in Catharanthus roseus developing seedlings. Plant Physiol 1989; 91: 79–84.

    Article  CAS  Google Scholar 

  18. Fernandez JA, Kurz WGW, De Luca V. Conformation-dependent inactivation of tryptophan decarboxylase from Catharanthus roseus. Biochem Cell Biol 1989 67: 730–734.

    Article  CAS  Google Scholar 

  19. De Luca V, Balsevich J, Tyler B et. al. Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus seedlings. J Plant Physiol 1986; 125: 147–156.

    Article  Google Scholar 

  20. Alvarez Fernandez J, De Luca V. Ubiquitin-mediated degradation of tryptophan decarboxylase from Catharanthus roseus. Phytochemistry 1994 36: 1123–1128.

    Article  CAS  Google Scholar 

  21. Varshaysky A. The ubiquitin system. Trends Biochem Sci 1997; 10: 383–387.

    Article  Google Scholar 

  22. Roewer IA, Cloutier N, Nessler CL et al. Transient induction of tryptophan decarboxylase genes in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 1992; 11: 86–89.

    Article  CAS  Google Scholar 

  23. Pasquali G, Goddijn OJ, de Waal A et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 1992; 18: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  24. Goddijn OJ, de Kam RJ, Zanetti A et al. Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 1992; 18: 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  25. Aerts RJ, Alarco AM, De Luca V. Auxins induce tryptophan decarboxylase in radicles of Catharanthus seedlings. Plant Physiol 1992; 100: 1014–1019.

    Article  PubMed  CAS  Google Scholar 

  26. Songstad DD, De Luca V, Brisson N et al. High level of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol 1990; 94: 1410–1413.

    Article  PubMed  CAS  Google Scholar 

  27. Songstad DD, Kurz WGW, Nessler CL. Tyramine accumulation in Nicotiana tabacum transformed with a chimeric tryptophan decarboxylase gene. Phytochemistry 1991 30: 3245–3246.

    Article  CAS  Google Scholar 

  28. Poulson C, Goddijn OJM, Hoge JHC et al. Anthranilate synthase and chorismate synthase activities in transgenic tobacco plants overexpressing tryptophan decarboxylase from Catharanthus roseus. Transgen Res 1994; 3: 43–49.

    Article  Google Scholar 

  29. Negrel J, Vallée JC, Martin C. Ornithine decarboxylase activity and the hypersensitive reaction to tobacco mosaic virus in Nicotiana tabacum. Phytochemistry 1984; 12: 2747–2751.

    Article  Google Scholar 

  30. Prevost J, Perdrizet E. Aliphatic and aromatic amines during development of Nicotiana tabacum. Phytochemistry 1981; 20: 2131–2134.

    Article  Google Scholar 

  31. Negrel J,Jeandet P. Metabolism of tyramine and feruloyltryamine in TMV inoculated leaves of Nicotiana tabacum. Phytochemistry 1987; 26:2185–2190.

    Google Scholar 

  32. Ibrahim RK, Chavadej S, De Luca V. Engineering altered glucosinolate biosynthesis by two alternative strategies. Recent Advances in Phytochemistry 1994; 28: 125–152. ( Plenum press, New York ).

    Google Scholar 

  33. Chavadej S, Brisson N, McNeil JN et al. Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc Natl Acad Sci USA 1994; 91: 2166–2170.

    Article  PubMed  CAS  Google Scholar 

  34. Field trials performed in collaboration with W.A. Keller, Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada.

    Google Scholar 

  35. Berlin J, Mollenschott C, Sasse F et al. Restoration of serotonin biosynthesis in cell suspension cultures of Peganum harmala by selection for 4-methyltryptophan-tolerant cell lines. J Plant Physiol 1987; 131: 225–236.

    Article  CAS  Google Scholar 

  36. Berlin J, Rugenhagen C, Dietze P et al. Increased production of serotonin by cell suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase gene fro Catharanthus roseus. Transgen Res 1993; 2: 336–344.

    Article  CAS  Google Scholar 

  37. Goddijn OJ, Pennings EJM, van der Helm P, et al. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgen Res 1995; 4: 315–323.

    Article  CAS  Google Scholar 

  38. Hallard D, van der Heijden R, Verpoorte R et al. Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding. Plant Cell Rep 1997; 17: 50–54.

    Article  CAS  Google Scholar 

  39. Yao K, De Luca V, Brisson N. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to P. infestans. Plant Cell 1995; 7: 1787–1799.

    PubMed  CAS  Google Scholar 

  40. Bentley R. The shikimate pathway-a metabolic tree with many branches. Crit Rev Biochem Mol Biol 1990; 25: 307–384.

    Article  PubMed  CAS  Google Scholar 

  41. Margna U. Control at the level of substrate supply, an alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 1977; 16: 419–426.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Luca, V. (2000). Metabolic Engineering of Crops with the Tryptophan Decarboxylase of Catharanthus Roseus . In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics