Skip to main content

Geographic distribution of freshwater blue-green algae

  • Chapter
Biogeography of Freshwater Algae

Part of the book series: Developments in Hydrobiology ((DIHY,volume 118))

Abstract

The analysis of the currently available data for morphologically unambiguously defined freshwater blue-green algae indicates that besides (sub-)cosmopolitan species, taxa with a more restricted distribution also exist. Many of these have a holarctic or pantropic distribution. It is hypothesized that, besides the distribution of ecological niches, temperature is one of the main controlling factors restricting species to particular latitudinal zones. Furthermore, the presence of species with a regional distribution (endemics) can not be ruled out, indicating that other factors must be considered. The possible role of dispersal capacities and of dispersal rates in relation to the earth history and to the speciation of blue-green algae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aakerman, T., Skulberg, O. M. & S. Liaaen-Jensen, 1992. A comparison of the carotenoids of strains of Oscillatoria and Spirulina (Cyanobacteria). Biochem. Syst. Ecol. 20: 761–769.

    Article  Google Scholar 

  • Anagnostidis, K. & J. Komarek, 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Arch. Hydrobiol. Suppl. 71 (Algological Studies 38/39): 291–302.

    Google Scholar 

  • Booth, W. E., 1946. The thermal death point of certain soil inhabiting algae. Proc. Montana Acad. Sci. 5/6: 21–23.

    Google Scholar 

  • Brannon, M. A., 1952. Some Myxophyceae in Florida. Quart. J. Florida Acad. Sci. 15: 70–78.

    Google Scholar 

  • Brock, M. L., R. G. Wiegert & T. D. Brock, 1969. Feeding by Paracoenia and Ephydra ( Diptera: Ephydridae) on the microorganisms of hot springs. Ecology 50: 192–200.

    Google Scholar 

  • Cameron, R. E. & G. B. Blank, 1966. Soil studies. Desert microflora. XI. Desert soil algae survival at extremely low temperatures. J. P. M. Space Programs Summary 37–37: 174–181.

    Google Scholar 

  • Castenholz, R. W., 1969. The thermophilic cyanophytes of Iceland and the upper temperature limit. J. Phycol. 5: 360–368.

    Article  Google Scholar 

  • Castenholz, R. W., 1970. Laboratory culture of thermophilic cyanophytes. Schweiz. Z. Hydrol. 32: 538–551.

    Google Scholar 

  • Castenholz, R. W., 1978. The biogeography of hot spring algae through enrichment cultures. Mitt. int. Ver. Limnol. 21: 296–315.

    Google Scholar 

  • Castenholz, R. W., 1983. Ecology of blue-green algae in hot springs. In N. G. Carr & B. A. Whitton (eds), The Biology of Blue-Green Algae. Botanical Monographs 9: 379–414.

    Google Scholar 

  • Castenholz, R. W., 1992. Species usage, concept, and evolution of the cyanobacteria (blue-green algae). J. Phycol. 28: 737–745.

    Article  Google Scholar 

  • Drouet, F. 1981. Revision of the Stigonemataceae with a summary of the classification of the blue-green algae. Beih. Nova Hedwigia 66: 1–221.

    Google Scholar 

  • Fjerdingstad, E. 1969. Cell dimensions and taxonomy of Anabaena variabilis Kütz. emend. (Cyanophyceae). Schweiz. Z. Hydrol. 31: 59–80.

    Google Scholar 

  • Fogg, G. E., W. D. P. Stewart, P. Fay & A. E. Walsby, 1973. The blue-green algae. Academic Press, London, 459 pp.

    Google Scholar 

  • Foy, R. H., C. E. Gibson & R. V. Smith, 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. phycol. J. 11: 151–163.

    Article  Google Scholar 

  • Frémy, P. 1990. Les Myxophycées de l’Afrique équatoriale française Arch Bot. 3, mémoire 2: 1–508.

    Google Scholar 

  • Geitler, L., 1932. Cyanophyceae. In Rabenhorst’s KryptogamenFlora von Deutschland, Österreich und der Schweiz. Akad Verlagsges., Leipzig: 14: 1–1196.

    Google Scholar 

  • Geitler, L., 1982. Zur Kenntnis der Oscillatoriacee Pseudanabaena galeata (Cyanophyta). Pl. Syst. Evol. 141: 169–175.

    Article  Google Scholar 

  • Geiler, L. & F. Ruttner, 1935. Die Cyanophyceen der deutschen limnologischen Sunda-Expedition, ihre Morphologie, Systematik und Ökologie. Arch. Hydrobiol., Suppl. 14 (Tropische Binnengewässer 6): 308–369: 371–483.

    Google Scholar 

  • Giovannoni, S. J., S. Turner, G. J. Olsen, S. Barns, D. J. Lane & N. R. Pace, 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170: 3584–3592.

    PubMed  CAS  Google Scholar 

  • Golubic, S., 1965. Über die Variabilität zweier mariner Oscillatorien aus der Sektion ‘Margaritiferae’. Schweiz. Z. Hydrol. 27: 233–237.

    Google Scholar 

  • Hoffmann, L., 1990a. Presence of Mastigocladopsis jogensis (Cyanophyceae, Mastigocladopsidaceae) in Corsica (France). Cryptogamie, Algologie 11: 219–224.

    Google Scholar 

  • Hoffmann, L., 1990b. Rediscovery of Loriella osteophila (Cyanophyceae). Br. Phycol. J. 25: 391–395.

    Article  Google Scholar 

  • Hoffmann, L., 1993. Marine Cyanophyceae of Papua New Guinea. V. Nostocales (except Rivulariaceae) and Stigonematales. Nova Hedwigia 57: 393–408.

    Google Scholar 

  • Hoffmann, L., 1994. Biogeography of marine blue-green algae. Arch. Hydrobiol. Suppl. 105 (Algological Studies 75): 137–148.

    Google Scholar 

  • Iyengar, M. O. P. & T. V. Desikachary, 1946. Mastigocladopsis jogensis gen. et sp. nov., a new member of the Stigonemataceae. Proc. Indian Acad. Sci. B 24: 55–59.

    Google Scholar 

  • Kangatharalingam, N. & J. C. Priscu, 1993. Isolation and verification of anatoxin-a producing clones of Anabaena fins-aquae (Lyngb.) de Breb. from a eutrophie lake. FEMS Microbiol. Ecol. 12: 127–130.

    Article  CAS  Google Scholar 

  • Kato, T., M. F. Watanabe & M. Watanabe, 1991. Allozyme divergence in Microcystis (Cyanophyceae) and its taxonomic inference. Arch. Hydrobiol. Suppl. 92 (Algological Studies 64): 129–140.

    Google Scholar 

  • Knell, A. H. & S. Golubic, 1992. Proterozoic and living cyanobacteria. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M. & P. A. Trudinger (eds), Early organic evolution: implications for mineral and energy resources, 450–462. Springer Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Kohl, J.-G. & A. Nicklisch, 1981. Chromatic adaptation of the planktonic blue-green alga Oscillatoria redekei Van Goer and its ecological significance. Int. Rev. ges. Hydrobiol. 66: 83–94.

    Article  Google Scholar 

  • Komárek, J., 1972. Temperaturbedingte morphologische Variabilität bei drei Phormidium-Arten ( Cyanophyceae) in Kulturen. Preslia 44: 293–307.

    Google Scholar 

  • Komárek, J., 1975. Die Bedeutung der geographischen Areale der Süsswasseralgen (besonders planktischen Cyanophyceen) für das Studium der Balkanischen Mikroflora. In Problems of Balkan Flora & Vegetation, Sofia, 95–103.

    Google Scholar 

  • Komárek, J., 1985. Do all cyanophytes have a cosmopolitan distribution? Survey of the freshwater cyanophyte flora of Cuba. Arch. Hydrobiol. Suppl. 71. (Algological Studies 56): 247–345.

    Google Scholar 

  • Komárek, J., 1994. Current trends and species delimitation in the cyanoprokaryote taxonomy. Arch. Hydrobiol. Suppl. 105 (Algological Studies 75): 11–29.

    Google Scholar 

  • Komárek, J. & J. Lukayský, 1988. Arthronema, a new cyanophyte genus from Afro-Asian deserts. Arch. Hydrobiol. Suppl. 80 (Algological Studies 50-53 ): 249–267.

    Google Scholar 

  • Lipman, C. B., 1941. The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club 68: 664–666.

    Article  Google Scholar 

  • Llukkainen, R., Sivonen, K., Namikoshi, M., Färdig, M., Rinehart, K. L. & S. I. Niemelä, 1993. Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a microcystin. Appl. Envir. Microbiol. 59: 2204–2209.

    Google Scholar 

  • Meffert, M.-E., 1989. Planktic unsheathed filaments (Cyanophyceae) with polar and central gas vacuoles. II. Biology, population dynamics and biotopes of Limnothrix redekei (Van Goor) Meffert. Arch. Hydrobiol. 116: 257–282.

    Google Scholar 

  • Meffert, M.-E. & H.-J. Krambeck, 1977. Planktonic blue-green algae of the Oscillatoria redekei group. Arch. Hydrobiol. 79: 149–171.

    CAS  Google Scholar 

  • Mollenhauer, D., 1970. Beiträge zur Kenntnis der Gattung Nostoc. Abh. Senckenb. naturf. Ges. 254: 1–75.

    Google Scholar 

  • Mollenhauer, D., 1986. Blaualgen der Gattung Nostoc - ihre Rolle in Forschung und Wissenschaftsgeschichte IV. Natur und Museum 116: 104–120.

    Google Scholar 

  • Nielsen, C. S. & G. L. Madsen, 1948. Preliminary checklist of the algae of the Tallahassee area. Quart. J. Florida Acad. Sci. 11: 63–66.

    Google Scholar 

  • Rott, E. & M. Hernández-Mariné, 1994. Pulvinularia suecica, a rare stigonematalean cyanophyte. Arch. Hydrobiol. Suppl. 105 (Algological studies 75 ): 313–322.

    Google Scholar 

  • Skulberg, O. M. & R. Skulberg, 1985. Planktic species of Oscillatoria (Cyanophyceae) from Norway. Characterization and classification. Arch. Hydrobiol. Suppl. 71 (Algological Studies 38/39): 157–174.

    Google Scholar 

  • Starr, W. T. & H. C. Holleman, 1979. Cultures of Phormidium, Plectonema, Lyngbya and Synechococcus (Cyanophyceae) under different conditions: their growth and morphological variability. Acta Bot. Need. 28: 45–66.

    Google Scholar 

  • Stroh, L., 1938. Über prämortale Mazeration bei Oscillatoriaceen. Arch. Protistenk. 91: 187–201.

    CAS  Google Scholar 

  • Stulp, B. K. & W. T. Stam, 1984. Genotypic relationships between strains of Anabaena ( Cyanophyceae) and their correlation with morphological affinities. Br. phycol. J. 19: 287–301.

    Article  Google Scholar 

  • Stulp, B. K., S. A. Bos, H. Stenveld & W. T.Stam, 1984. Growth of Anabaena strains (Cyanophyceae) exposed to crossed gradients of light and temperature. Cryptogamie, Algologie 5: 63–71.

    Google Scholar 

  • Waterbury, J. B. & R. Y. Stanier, 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Bacteriol. Rev. 42: 2–44.

    CAS  Google Scholar 

  • Zaneveld, J. S., 1988. The Cyanophyta of the Ross Sea islands and coastal Victoria land, Antarctica. Koeltz Scientific Books, Koenigstein, Germany, 85 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jørgen Kristiansen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoffmann, L. (1996). Geographic distribution of freshwater blue-green algae. In: Kristiansen, J. (eds) Biogeography of Freshwater Algae. Developments in Hydrobiology, vol 118. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0908-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0908-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4756-4

  • Online ISBN: 978-94-017-0908-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics