Skip to main content

Tableaux for Many-Valued Logics

  • Chapter
Handbook of Tableau Methods

Abstract

This article reports on research done in the intersection between many-valued logics and logical calculi related to tableaux. A lot of important issues in many-valued logic, such as algebras arising from many-valued logic, many-valued function minimization, philosophical topics, or applications are not discussed here; for these, we refer the reader to general monographs and overviews such as [Rosser and Turquette, 1952; Rescher, 1969; Urquhart, 1986; Bole and Borowik, 1992; Malinowski, 1993; Hähnle, 1994; Panti, to appear]. More questionable, perhaps, than the omissions is the need for a handbook chapter on tableaux for many-valued logics in the first place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Avron. Natural 3-valued logics—characterization and proof theory. Journal of Symbolic Logic, 56 (1): 276–294, 1991.

    Article  Google Scholar 

  2. M. Baaz and C. G. Fermüller. Nonelementary speedups between different versions of tableaux. In Peter Baumgartner, Reiner Hähnle, and Joachim Posegga, editors, Proc. 4th Workshop on Deduction with Tableaux and Related Methods, St. Goar, Germany, volume 918 of LNCS, pages 217–230. Springer-Verlag, 1995.

    Google Scholar 

  3. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued logics. Journal of Symbolic Computation, 19 (4): 353–391, April 1995.

    Article  Google Scholar 

  4. M. Baaz and R. Zach. Note on calculi for a three-valued logic for logic programming. Bulletin of the EATCS, 48: 157–164, 1992.

    Google Scholar 

  5. B. Becker and R. Drechsler. Efficient graph-based representation of multi-valued functions with an application to genetic algorithms. In Proc. 24th International Sym- posium on Multiple-Valued Logic, Boston/MA, pages 65–72. IEEE Press, Los Alamitos, May 1994.

    Google Scholar 

  6. B. Beckert, R. Hähnle, K. Geiß, P. Oel, C. Pape, and M. Sulzmann. The Many-Valued Tableau-Based Theorem Prover 374P, Version 4.0. Interner Bericht 3/96, Universität Karlsruhe, Fakultät fur Informatik, 1996.

    Google Scholar 

  7. B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover 3T4P, version 4.0. In Michael McRobbie and John Slaney, editors, Proc. 13th Conference on Automated Deduction, New Brunswick/NJ, USA,volume 1104 of LNCS,pages 303–307. Springer-Verlag, 1996.

    Google Scholar 

  8. B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized 5-rule in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Proceedings of the third Kurt Gödel Colloquium KGC’93, Brno, Czech Republic,volume 713 of LNCS,pages 108–119. Springer-Verlag, August 1993.

    Google Scholar 

  9. A. Blikle. Three-valued predicates for software specification and validation. Fundamenta Informaticae, XIV: 387–410, 1991.

    Google Scholar 

  10. A. Bloesch. Tableau style proof systems for various many-valued logics. Technical Report 94–18, Software Verification Research Center, Dept. of Computer Science, University of Queensland, April 1994.

    Google Scholar 

  11. L. Bolc and P. Borowik. Many-Valued Logics. 1: Theoretical Foundations. Springer-Verlag, 1992.

    Google Scholar 

  12. G. Boole. An Investigation of the Laws of Thought. Walton, London, 1854. Reprinted by Dover Books, New York, 1954.

    Google Scholar 

  13. K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package. In Proc. 27 th ACM/IEEE Design Automation Conference,pages 40–45 IEEE Press, Los Alamitos, 1990.

    Google Scholar 

  14. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. SangiovanniVincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer, Boston, 1984.

    Book  Google Scholar 

  15. R. K. Brayton, P. C. McGeer, J. V. Sanghavi, and A. L. Sangiovanni-Vincentelli. A new exact minimizer for two-level logic synthesis. In Tsutomu Sasao, editor, Logic Synthesis and Optimization, chapter 1, pages 1–32. Kluwer, Norwell/MA, USA, 1993.

    Chapter  Google Scholar 

  16. F. M. Brown. Boolean Reasoning. Kluwer, Norwell/MA, USA, 1990.

    Google Scholar 

  17. M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, Dieter Nazareth, Franz Regensburger, and Ketil Stolen. The requirement and design specification language Spectrum, an informal introduction, version 1.0. Technical report, Institut fir Informatik, Technische Universität München, March 1993.

    Google Scholar 

  18. R. E. Bryant and C.-J. H. Seger. Formal verification of digital circuits using symbolic ternary system models. In E. M. Clarke and R. P. Kurshan, editors, Computer-Aided Verification: Proc. of the 2nd International Conference CAV’90, LNCS 531, pages 33–43. Springer-Verlag, 1991.

    Google Scholar 

  19. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35: 677–691, 1986.

    Google Scholar 

  20. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification using symbolic model checking. In Proc. 27th Design Automation Conference (DAC 90),pages 46–51, 1990.

    Google Scholar 

  21. W. Camielli. An algorithm for axiomatizing and theorem proving in finite many-valued propositional logics. Logique et Analyse, 28 (112): 363–368, 1985.

    Google Scholar 

  22. W. A. Camielli. Systematization of finite many-valued logics through the method of tableaux. Journal of Symbolic Logic, 52 (2): 473–493, June 1987.

    Article  Google Scholar 

  23. W. A. Camielli. On sequents and tableaux for many-valued logics. Journal of Non-Classical Logic, 8 (1): 59–76, May 1991.

    Google Scholar 

  24. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  25. P. Doherty. Preliminary report: NM3 — a three-valued non-monotonic formalism. In Z. Rag, M. Zemankova, and M. Emrich, editors, Proc. of 5th Int. Symposium on Methodologies for Intelligent Systems, Knoxville, TN, pages 498–505. North-Holland, 1990.

    Google Scholar 

  26. P. Doherty. A constraint-based approach to proof procedures for multi-valued logics. In First World Conference on the Fundamentals of Artificial Intelligence WOCFAI-91, Paris, 1991.

    Google Scholar 

  27. P. Doherty. NML3 — A Non-Monotonic Formalism with Explicit Defaults. PhD thesis, University of Linköping, Sweden, 1991.

    Google Scholar 

  28. G. W. Dueck and J. T. Butler. Multiple-valued logic operations with universal literals. In Proc. 24th International Symposium on Multiple-Valued Logic, Boston/MA, pages 73–79. IEEE Press, Los Alamitos, May 1994.

    Google Scholar 

  29. G. Epstein. The lattice theory of Post algebras. Transactions of the American Mathematical Society, 95 (2): 300–317, May 1960.

    Article  Google Scholar 

  30. M. C. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming, 11 (2): 91–116, August 1991.

    Article  Google Scholar 

  31. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, New York, 1996. First edition, 1990.

    Google Scholar 

  32. S. Gerberding. DT—an automated theorem prover for multiple-valued first-order predicate logics. In Proc. 26th International Symposium on Multiple-Valued Logics, Santiago de Compostela, Spain, pages 284–289. IEEE Press, Los Alamitos, May 1996.

    Google Scholar 

  33. M. L. Ginsberg. Multi-valued logics. Computational Intelligence, 4 (3), 1988.

    Google Scholar 

  34. R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics. In Egon Börger, Hans Kleine Büning, Michael M. Richter, and Wolfgang Schönfeld, editors, Selected Papers from Computer Science Logic, CSL’90, Heidelberg, Germany, volume 533 of LNCS, pages 248–260. Springer-Verlag, 1991.

    Google Scholar 

  35. R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. In Proc. International Symposium on Multiple-Valued Logic, Victoria, pages 238–245. IEEE Press, Los Alamitos, 1991.

    Google Scholar 

  36. R. Hähnle. A new translation from deduction into integer programming. In Jacques Calmet and John A. Campbell, editors, Proc. Int. Conf. on Artificial Intelligence and Symbolic Mathematical Computing AISMC-1, Karlsruhe, Germany, volume 737 of LNCS, pages 262–275. Springer-Verlag, 1992.

    Google Scholar 

  37. R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International Series of Monographs on Computer Science. Oxford University Press, 1994.

    Google Scholar 

  38. R. Hähnle. Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence, 12 (3,4): 231–264, December 1994.

    Google Scholar 

  39. R. Hähnle. Short conjunctive normal forms in finitely-valued logics. Journal of Logic and Computation, 4 (6): 905–927, 1994.

    Article  Google Scholar 

  40. R. Hähnle. Exploiting data dependencies in many-valued logics. Journal of Applied Non-Classical Logics, 6 (1): 49–69, 1996.

    Article  Google Scholar 

  41. R. Hähnle. Proof theory of many-valued logic—linear optimization—logic design: Connections and interactions. Soft Computing—A Fusion of Foundations, Methodologies and Applications, 1 (3): 107–119, September 1997.

    Google Scholar 

  42. R. Hähnle. Commodious axiomatization of quantifiers in multiple-valued logic. Studia Logica,61(1): 101–121,1998. Special Issue on Many-Valued Logics, their Proof Theory and Algebras.

    Google Scholar 

  43. R. Hähnle and G. Escalada-Imaz. Deduction in many-valued logics: a survey. Mathware & Soft Computing, IV (2): 69–97, 1997.

    Google Scholar 

  44. R. Hähnle and W. Kernig. Verification of switch level designs with many-valued logic. In Andrei Voronkov, editor, Proc. LPAR’93, St. Petersburg, Russia, volume 698 of LNCS, pages 158–169. Springer-Verlag, 1993.

    Google Scholar 

  45. R. Hähnle and P. H. Schmitt. The liberalized 5-rule in free variable semantic tableaux. Journal of Automated Reasoning, 13 (2): 211–222, October 1994.

    Article  Google Scholar 

  46. M. Heisel, W. Reif, and W. Stephan. Formal software development in the KIV system. In L. McCartney, editor, Automating Software Design. AAAI Press, 1991.

    Google Scholar 

  47. A. Hoogewijs and T. M. Elnadi. KARNAK: an automated theorem prover for PPC. The CAGe Reports 10, University of Gent, Computer Algebra Group, 1994.

    Google Scholar 

  48. J. N. Hooker. A quantitative approach to logical inference. Decision Support Systems, 4: 45–69, 1988.

    Article  Google Scholar 

  49. B. Hösli. Robuste Logik. PhD thesis, Eidgenössische Technische Hochschule Zürich, 1993.

    Google Scholar 

  50. R. G. Jeroslow. Logic-Based Decision Support. Mixed Integer Model Formulation. Elsevier, Amsterdam, 1988.

    Google Scholar 

  51. M. Kapetanovic and A. Krapez. A proof procedure for the first-order logic. Publications de l’Institut Mathematiqu, nouvelle série, 59 (45): 3–5, 1989.

    Google Scholar 

  52. M. Kerber and M. Kohlhase. A tableau calculus for partial functions. In Collegium Logicum. Annals of the Kurt-Gödel-Society, volume 2, pages 21–49. Springer-Verlag, Wien New York, 1996.

    Chapter  Google Scholar 

  53. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. Jornal of Logic Programming, 12: 335–367, 1992.

    Article  Google Scholar 

  54. V. G. Kirin. On the polynomial representation of operators in the n-valued propositional calculus (in Serbocroatian). Glasnik Mat.-Fiz. Astronom. Drustvo Mat. Fiz. Hravtske Ser. II, 18: 312, 1963. Reviewed in MR 29 (1965) p. 420.

    Google Scholar 

  55. V. G. Kirin. Gentzen’s method of the many-valued propositional calculi. Zeitschrift fir mathematische Logik und Grundlagen der Mathematik, 12: 317–332, 1966.

    Article  Google Scholar 

  56. L. Löwenheim. Über die Auflösung von Gleichungen im logischen Gebietekalkül. Mathematische Annalen, 68: 169–207, 1910.

    Article  Google Scholar 

  57. J. J. Lu. Logic programming with signs and annotations. Journal of Logic and Computation, 6 (6): 755–778, 1996.

    Article  Google Scholar 

  58. J. J. Lu, N. V. Murray, and E. Rosenthal. Signed formulas and annotated logics. In Proc. 23rd International Symposium on Multiple-Valued Logics,pages 48–53 IEEE Press, Los Alamitos, 1993.

    Google Scholar 

  59. G. Malinowski. Many-Valued Logics, volume 25 of Oxford Logic Guides. Oxford University Press, 1993.

    Google Scholar 

  60. P. Miglioli, U. Moscato, and M. Omaghi. An improved refutation system for intuitionistic predicate logic. Journal of Automated Reasoning,13(3): 361–374,1994.

    Google Scholar 

  61. P. Miglioli, U. Moscato, and M. Omaghi. Refutation systems for propositional modal logics. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Proc. 4th Workshop on Deduction with Tableaux and Related Methods, St. Goar, Germany,volume 918 of LNCS,pages 95–105. Springer-Verlag, 1995.

    Google Scholar 

  62. A. Mostowski. On a generalization of quantifiers. Fundamenta Mathematicæ, XLIV: 12–36, 1957.

    Google Scholar 

  63. D. Mundici. Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science, 52: 145–153, 1987.

    Article  Google Scholar 

  64. D. Mundici. A constructive proof of McNaughton’s Theorem in infinite-valued logic. Journal of Symbolic Logic, 59 (2): 596–602, June 1994.

    Article  Google Scholar 

  65. N. V. Murray. Completely non-clausal theorem proving. Artificial Intelligence, 18: 6785, 1982.

    Article  Google Scholar 

  66. N. V. Murray and E. Rosenthal. Improving tableau deductions in multiple-valued logics. In Proceedings 21st International Symposium on Multiple-Valued Logic, Victoria, pages 230–237. IEEE Press, Los Alamitos, May 1991.

    Google Scholar 

  67. N. V. Murray and E. Rosenthal. Resolution and path-dissolution in multiple-valued logics. In Proceedings International Symposium on Methodologies for Intelligent Systems, Charlotte, LNAI. Springer-Verlag, 1991.

    Google Scholar 

  68. N. V. Murray and E. Rosenthal. Adapting classical inference techniques to multiple-valued logics using signed formulas. Fundamenta Informaticae, 21 (3): 237–253, 1994.

    Google Scholar 

  69. M. Areski Nait Abdallah. The Logic of Partial Information. Monographs in Theoretical Computer Science — An EATCS Series. Springer-Verlag, 1995.

    Book  Google Scholar 

  70. P. O’Heam and Z. Stachniak. A resolution framework for finitely-valued first-order logics. Journal of Symbolic Computing, 13: 235–254, 1992.

    Article  Google Scholar 

  71. E. Orlowska. Mechanical proof procedure for the n-valued propositional calculus. Bull. de L’Acad. Pol. des Sci., Série des sci. math., astr. et phys., XV (8): 537–541, 1967.

    Google Scholar 

  72. E. Orlowska. Mechanical proof methods for Post Logics. Logique et Analyse, 28 (110): 173–192, 1985.

    Google Scholar 

  73. G. Panti. Multi-valued logics. In D. Gillies and P. Smets, editors, Handbook of Defensible Reasoning and Uncertainty Management Systems,volume 1, chapter 2. Kluwer, to appear.

    Google Scholar 

  74. M. A. Perkowski. The generalized orthonormal expansion of functions with multiple-valued inputs and some of its application. In Proc. 22nd International Symposium on Multiple-Valued Logic, pages 442–450. IEEE Press, Los Alamitos, May 1992.

    Google Scholar 

  75. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of Symbolic Computation, 2: 293–304, 1986.

    Article  Google Scholar 

  76. J. Posegga. Deduktion mit Shannongraphen fir Prädikatenlogik erster Stufe. PhD thesis, University of Karlsruhe, 1993. diski 51, infix Verlag.

    Google Scholar 

  77. N. Rescher. Many-Valued Logic. McGraw-Hill, New York, 1969.

    Google Scholar 

  78. J. B. Rosser and A. R. Turquette. Many-Valued Logics. North-Holland, Amsterdam, 1952.

    Google Scholar 

  79. G. Rousseau. Sequents in many valued logic I. Fundamenta Mathematicte, LX: 2333, 1967.

    Google Scholar 

  80. G. Rousseau. Sequents in many valued logic II. Fundamenta Mathematicte, LXVII: 125–131, 1970.

    Google Scholar 

  81. R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimization. IEEE Transactions on Computer-Aided Design, 6 (5): 727–750, September 1987.

    Article  Google Scholar 

  82. Z. Saloni. Gentzen rules for m-valued logic. Bull. de L’Acad. Pol. des Sci., Série des sci. math., astr. et phys., XX: 819–825, 1972.

    Google Scholar 

  83. G. Salzer. MUltlog: an expert system for multiple-valued logics. In Collegium Logicum. Annals of the Kurt-Gödel-Society, volume 2. Springer-Verlag, Wien New York, 1996.

    Google Scholar 

  84. G. Salzer. Optimal axiomatizations for multiple-valued operators and quantifiers based on semilattices. In Michael McRobbie and John Slaney, editors, Proc. 13th Conference on Automated Deduction, New Brunswick/NJ, USA, volume 1104 of LNCS, pages 688–702. Springer-Verlag, 1996.

    Google Scholar 

  85. T. Sasao. Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays. IEEE Transactions on Computers, C-30: 635–643, September 1981.

    Google Scholar 

  86. T. Sasao. Input variable assignment and output phase optimization of PLA’s. IEEE Transactions on Computers, C-33(10): 879–894, October 1984.

    Google Scholar 

  87. T. Sasao. Optimization of multi-valued AND-XOR expressions using multiple-place decision diagrams. In Proc. 22nd International Symposium on Multiple-Valued Logic, pages 451458. IEEE Press, Los Alamitos, May 1992.

    Google Scholar 

  88. T. Sasao. Logic synthesis with EXOR gates. In Tsutomu Sasao, editor, Logic Synthesis and Optimization, chapter 12, pages 259–286. Kluwer, Norwell/MA, USA, 1993.

    Chapter  Google Scholar 

  89. T. Sasao. Ternary decision diagrams and their applications. In Tsutomu Sasao and Masahiro Fujita, editors, Representations of Discrete Functions, chapter 12, pages 269–292. Kluwer, Norwell/MA, USA, 1996.

    Chapter  Google Scholar 

  90. A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, 1986.

    Google Scholar 

  91. K. Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und Prädikatenkalkille. Zeitschrift für math. Logik und Grundlagen der Mathematik, 1: 241–251, 1955.

    Article  Google Scholar 

  92. C. E. Shannon. A symbolic analysis of relay and switching circuits. AIEE Transactions, 67: 713–723, 1938.

    Google Scholar 

  93. R. M. Smullyan. First-Order Logic. Dover Publications, New York, second corrected edition, 1995. First published 1968 by Springer-Verlag.

    Google Scholar 

  94. A. Srinivasan, T. Kam, S. Malik, and R. E. Brayton. Algorithms for discrete function manipulation. In Proc. IEEE International Conference on CAD, Santa Clara/CA, USA,pages 92–95. IEEE Press, Los Alamitos, November 1990.

    Google Scholar 

  95. Z. Stachniak. The resolution rule: An algebraic perspective. In Proc. of Algebraic Logic and Universal Algebra in Computer Science Conf, pages 227–242. Springer LNCS 425, Heidelberg, 1988.

    Google Scholar 

  96. Z. Stachniak and P. O’Hearn. Resolution in the domain of strongly finite logics. Fundamenta Informaticae, XIII: 333–351, 1990.

    Google Scholar 

  97. U. Straccia. A sequent calculus for reasoning in four-valued description logics. In Didier Galmiche, editor, Proc. International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Pont-à-Mousson, France, volume 1227 of LNCS, pages 343–357. Springer-Verlag, 1997.

    Google Scholar 

  98. W. Suchot. La méthode de Smullyan de construire le calcul n-valent de Lukasiewicz avec implication et négation. Reports on Mathematical Logic, Universities of Cracow and Katowice, 2: 37–42, 1974.

    Google Scholar 

  99. S. J. Sunna. An algorithm for axiomatizing every finite logic. In David C. Rine, editor, Computer Science and Multiple-Valued Logics, pages 143–149. North-Holland, Amsterdam, second edition, 1984. Selected Papers from the International Symposium on Multiple-Valued Logics 1974.

    Google Scholar 

  100. M. Takahashi. Many-valued logics of extended Gentzen style I. Science Reports of the Tokyo Kyoiku Daigaku, Section A, 9(231): 95–116, 1967. MR 37.39, Zbl 172.8.

    Google Scholar 

  101. M. Takahashi. Many-valued logics of extended Gentzen style II. Journal of Symbolic Logic, 35 (4): 493–528, December 1970.

    Article  Google Scholar 

  102. A. Thayse, M. Davio, and J.-P. Deschamps. Optimization of multiple-valued decision diagrams. In Proc. International Symposium on Multiple-Valued Logics, ISMVL’79, Rosemont/IL, USA,pages 171–177. IEEE Press, Los Alamitos, 1979.

    Google Scholar 

  103. A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Vol. III: Alternatives in Classical Logic, chapter 2, pages 71–116. Reidel, Dordrecht, 1986.

    Google Scholar 

  104. Vienna Group for Multiple Valued Logics. MUltiog 1.0: Towards an expert system for many-valued logics. In Michael McRobbie and John Slaney, editors, Proc. 13th Conference on Automated Deduction, New Brunswick/NJ, USA, volume 1104 of LNCS, pages 226–230. Springer-Verlag, 1996.

    Google Scholar 

  105. N. Zabel. Nouvelles Techniques de Déduction Automatique en Logiques Polyvalentes Finies et Infinies du Premier Ordre. PhD thesis, Institut National Polytechnique de Grenoble, April 1993.

    Google Scholar 

  106. R. Zach. Proof theory of finite-valued logics. Master’s thesis, Institut für Algebra und Diskrete Mathematik, TU Wien, September 1993. Available as Technical Report TUW-E185. 2Z. 1–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hähnle, R. (1999). Tableaux for Many-Valued Logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds) Handbook of Tableau Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1754-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1754-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5184-4

  • Online ISBN: 978-94-017-1754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics