Skip to main content

Synergies Between Climate Change, Biodiversity, Ecosystem Function and Services, Indirect Drivers of Change and Human Well-Being in Forests

  • Chapter
  • First Online:
Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals

Abstract

Climate change is having impacts on the biodiversity and structure of many ecosystems. In this chapter, we focus on its impacts on forests. We will focus on how the potential climate change impacts on forest biodiversity and structure will have a reflection on the ecosystem services provided by forests, and therefore on the capacity of these ecosystems to support the Sustainable Development Goals set by the United Nations. The chapter will be organized in three sections, considering boreal, temperate, and tropical forests along each section. The first section will deal with the synergies or interactions between climate change, biodiversity, and ecosystem function with emphasis not only on plants but also on fungi, animals, and prokaryotes. Synergies between climate change and ecosystem services will be described and analyzed in the second section. To better link the first two sections, we will explore the relationships between ecosystem function, species traits, and ecosystem services. Finally, case studies for boreal, Mediterranean, and tropical forests will be presented, emphasizing the synergies between the above factors, the indirect drivers of change (demographic, economic, sociopolitical, science and technology, culture and religion), and human well-being (basic materials for a good life, health, good social relations, freedom of choice and actions) in forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FAO (1996) Declaration on world food security. World Food Summit, FAO, Rome http://www.fao.org/3/w3613e/w3613e00.htm

References

  • Abbas D, Current D, Phillips M, Rossman R, Hoganson H, Brooks KN (2011) Guidelines for harvesting forest biomass for energy: a synthesis of environmental considerations. Biomass Bioenergy 35:4538–4546. https://doi.org/10.1016/j.biombioe.2011.06.029

    Article  Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39(6):378–286

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. https://doi.org/10.2307/3546886

    Article  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Álvarez-Solas S, Tirira DG, Peñuela-Mora MC (2016) Reserva Biológica Colonso-Chalupas biological reserve: regional limito n primates in Ecuador? In: Proceedings of the 3rd Ecuadorian Congress of Mastozoology. Quito, pp 126–127

    Google Scholar 

  • Alves RRN, Alves HN (2011) The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiol Ethnomed 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammer C (2018) Diversity and forest productivity in a changing climate. New Phytol 221:50–66. https://doi.org/10.1111/nph.15263

    Article  PubMed  Google Scholar 

  • Anaya-Romero M, Muñoz-Rojas M, Ibáñez B, Marañón T (2016) Evaluation of forest ecosystem services in Mediterranean areas. Ecosyst Serv 20:82–90

    Article  Google Scholar 

  • Aussenac R, Bergeron Y, Ghotsa Mekontchou C, Gravel D, Pilch K, Drobyshev I (2017) Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth. J Ecol 105:1010–1020. https://doi.org/10.1111/1365-2745.12728

    Article  Google Scholar 

  • Aylward B (2005) Land use, hydrological function and economic valuation. In: Bonell M, Bruijnzeel LA (eds) Forests, water and people in the humid tropics: past, present and future hydrological research for integrated land and water management. Cambridge University Press, Cambridge, pp 99–120

    Chapter  Google Scholar 

  • Balvanera P (2012) Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas 21(1–2):136–147

    Google Scholar 

  • Bargués Tobella A (2016) The importance of tree cover for water resources in semiarid West Africa. Tesis Doctoral. Swedish University of Agricultural Sciences, Umeå, Suecia

    Google Scholar 

  • Benavides R, Rabasa SG, Granda E, Escudero A, Hódar JA, Martínez-Vilalta J, Rincón AM, Zamora R, Valladares F (2013) Direct and indirect effects of climate on demography and early growth of pinus sylvestris at the rear edge: changing roles of biotic and abiotic factors. PLoS One 8(3)

    Google Scholar 

  • Berndes G, Bergh J, Cowie A, Egnell G, Hetemaki L, Kauppi P, Khanna M, Kruz W, Lindner M, Lundmark T, Nabuurs G, Sims R, Solberg B (2018) Forests, bioenergy and climate change mitigation: are the worries justified? Letter exploring the use of forest biomass to produce energy, ahead of the European Parliament vote on the EU Renewable Energy Directive on 17 January 2018. Available at: https://www.efi.int/news/forests-bioenergy-and-climate-change-mitigation-are-worries-justified-2018-01-16

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–1993. https://doi.org/10.1016/0169-5347(94)90088-4

    Article  PubMed  CAS  Google Scholar 

  • Bielak K, Dudzinska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Sys 23:573–589

    Article  Google Scholar 

  • Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manage 237:342–352. https://doi.org/10.1016/j.foreco.2006.09.057

    Article  Google Scholar 

  • Blanco JA (2012) Forests may need centuries to recover their original productivity after continuous intensive management: an example from Douglas-fir. Sci Total Environ 437:91–103. https://doi.org/10.1016/j.scitotenv.2012.07.082

    Article  PubMed  CAS  Google Scholar 

  • Blanco JA (2017) Forests, soil and water: exploring their interactions. Ecosistemas 26(2):1–9. https://doi.org/10.7818/ECOS.2017.26-02.01

    Article  Google Scholar 

  • Blanco JA, Candel-Pérez D, Lo YH (2018) Determinants and tools to evaluate the ecological sustainability of using forest biomass as an alternative energy source, pp 589–624. In: Shuka G, Chkravarty S (eds) Forest biomass and carbon. InTech, London, pp 83–102. ISBN: 978-953-51-5753-3. https://doi.org/10.5772/intechopen.76005

    Chapter  Google Scholar 

  • Blanco JA, Imbert JB, Castillo FJ (2008) Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. For Ecol Manage 256:1840–1852. https://doi.org/10.1016/j.foreco.2008.07.011

    Article  Google Scholar 

  • Blaum N, Mosner E, Schwager M, Jeltsch F (2011) How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers Conserv 20(11):2333–2345

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Börjesson P, Hansson J, Berndes G (2017) Future demand for forest-based biomass for energy purposes in Sweden. For Ecol Manag 383:17–26. https://doi.org/10.1016/j.foreco.2016.09.018

    Article  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342:823–831

    Article  CAS  Google Scholar 

  • Brando P, Balch J, Nepstad D, Morton D, Putz F, Coe M, Silverio D, Macedo M, Davidson E, Nobrega C, Alencar A, Soares-Filho B (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci 111:6347–6352. https://doi.org/10.1073/pnas.1305499111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks BW, Sodhi NS, Bradshaw CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Article  Google Scholar 

  • Brown C, Ball J (2000) World view of plantation grown wood. Paper presented at the IUFRO XXI World Congress. Kuala Lumpur, Malaysia, August 2000

    Google Scholar 

  • Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO, Programa Hidrológico Internacional, París

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498

    Article  Google Scholar 

  • Buitenwerf R, Rose L, Higgins SI (2015) Three decades of multi-dimensional change in global leaf phenology. Nat Clim Chang 5:364–368

    Article  Google Scholar 

  • Bustamente M, Helmer E, Schill S, Belnap J, Brown L, Brugnoli E, Thompson L (2018) Chapter 4: direct and indirect drivers of change in biodiversity and nature’s contributions to people. Germany: the IPBES regional assessment report on biodiversity and ecosystem services for the Americas. In: Rice J, Seixas CS, Zaccagnini ME, Bedoya-Gaitán M, Valderrama N (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

    Google Scholar 

  • Buttle JM, Creed IF, Pomeroy JW (2000) Advances in Canadian forest hydrology, 1995–1998. Hydrol Process 14:1551–1578

    Article  Google Scholar 

  • Caballero LA, Easton ZM, Richards BK, Steenhuis TS (2013) Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model. J Hydrol Hydromech 61:9–20

    Article  Google Scholar 

  • Calder IR (2007) Forests and water- ensuring that forest benefits outweigh water costs. For Ecol Manag 251:110–120

    Article  Google Scholar 

  • Camarero JJ, Gazol A, Tardif JC, Conciatori F (2015) Attributing forest responses to global-change drivers: limited evidence of a CO2-fertilization effect in Iberian pine growth. J Biogeogr 42:2220–2233. https://doi.org/10.1111/jbi.12590

    Article  Google Scholar 

  • Campos-Silva J, Peres C, Antunes A, Valsecchi J, Pezzuti J (2017) Community-based population recovery of overexploited Amazonian wildlife. Persp Ecol Conserv 15(4):266–270

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  PubMed  CAS  Google Scholar 

  • Cavard X, Macdonald SE, Bergeron Y, Chen HY (2011) Importance of mixedwoods for biodiversity conservation: evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environ Rev 19:142–161

    Article  Google Scholar 

  • Cazzolla Gatti R, Callaghan T, Velichevskaya A, Dudko A, Fabbio L, Battipaglia G, Liang J (2019) Accelerating treeline shift in the Altai mountains under last-century climate change. Nat Sci Rep 9:7678–7691

    CAS  Google Scholar 

  • Chen I-C, Shiu H-J, Benedick S et al (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci U S A 106:1479–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy RB, Thomas RB (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112. https://doi.org/10.1016/S0168-1923(01)00233-7

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology I response to climate change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Coomes DA, Flores O, Holdaway R, Jucker T, Lines ER, Vanderwel MC (2014) Wood production response to climate change will depend critically on forest composition and structure. Glob Chang Biol 20:3632–3645. https://doi.org/10.1111/gcb.12622

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Dai EF, Wang XL, Zhu JJ, Xi WM (2017) Quantifying ecosystem service trade-offs for plantation forest management to benefit provisioning and regulating services. Ecol Evol 7:7807–7821. https://doi.org/10.1002/ece3.3286

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale VH, Kline KL, Parish ES, Cowie AL, Emory R, Malmsheimer RW, Slade R, Smith CTT, Wigley TBBEN, Bentsen NS, Berndes G, Bernier P, Brandão M, Chum HL, Diaz-Chavez R, Egnell G, Gustavsson L, Schweinle J, Stupak I, Trianosky P, Walter A, Whittaker C, Brown M, Chescheir G, Dimitriou I, Donnison C, Goss Eng A, Hoyt KP, Jenkins JC, Johnson K, Levesque CA, Lockhart V, Negri MC, Nettles JE, Wellisch M (2017) Status and prospects for renewable energy using wood pellets from the southeastern United States. GCB Bioenergy 9:1296–1305. https://doi.org/10.1111/gcbb.12445

    Article  Google Scholar 

  • de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H., Bardgett, R. D., .et al. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv, 19(10), 2873–2893.

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11(5):516–531

    Article  PubMed  Google Scholar 

  • de Jong J, Akselsson C, Egnell G, Löfgren S, Olsson BA (2017) Realizing the energy potential of forest biomass in Sweden – how much is environmentally sustainable? For Ecol Manag 383:3–16. https://doi.org/10.1016/j.foreco.2016.06.028

    Article  Google Scholar 

  • De la Torre L, Navarrete H, Muriel P, Macía MJ, Balslev H (2008). Encyclopedia of useful plants of Ecuador (with data extract). QCA Herbarium of the School of Biological Sciences of the Pontifical Catholic University of Ecuador & AAU Herbarium of the Department of Biological Sciences of Aarhus University

  • del Río M, Pretzsch H, Ruíz-Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Bielak K, Brazaitis G et al (2017) Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J Ecol 105:1032–1043. https://doi.org/10.1111/1365-2745.12727

    Article  Google Scholar 

  • Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016) Temperate and boreal tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann For Sci 73:5–25

    Article  Google Scholar 

  • Díaz S, Lavorel S, McIntyre SUE, Falczuk V, Casanoves F, Milchunas DG et al (2007) Plant trait responses to grazing – a global synthesis. Glob Chang Biol 13(2):313–341

    Article  Google Scholar 

  • Diffenbaugh NS, Field CB (2013) Changes in ecologically critical climate conditions. Science 341:486–492

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follet RF, Williams DG (2012) Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:807–815. https://doi.org/10.1111/j.1469-8137.2012.04349.x

    Article  PubMed  CAS  Google Scholar 

  • Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17. https://doi.org/10.5751/ES-05066-170450

  • Dziedek C, Härdtle W, von Oheimb G, Fichtner A (2016) Nitrogen addition enhances drought sensitivity of young deciduous tree species. Front Plant Sci 7:1100. https://doi.org/10.3389/fpls.2016.01100

    Article  PubMed  PubMed Central  Google Scholar 

  • Editorial Committee for Vegetation of China (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, Van Noordwijk M, Creed IF, Pokorny J, Gaveau D (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61

    Article  Google Scholar 

  • European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050, COM (2011)112 final. Brussels

    Google Scholar 

  • FAO (1996) Declaration on world food security. World Food Summit, FAO, Rome. Available on http://www.fao.org/3/w3613e/w3613e00.htm. Accessed 4 Aug 2020

  • FAO (1999) Forest management in temperate and boreal forests: current practices and the scope for implementing sustainable management. FAO, Rome

    Google Scholar 

  • FAO (2009) Forests and water. FAO Forestry studies 155. Food and Agriculture Organization of the United Nations, FAO, Rome

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2015: how are the world’s forests changing? FAO, Rome

    Google Scholar 

  • FAO (2016) Global Forest Resources Assessment 2015. How are the world forests changing? 2nd edn. FAO, Rome

    Google Scholar 

  • FAO (2018) The state of the world’s forests – forest pathways to sustainable development. Rome. License: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP & WHO (2018) The state of food security and nutrition in the world 2018: building climate resilience for food security and nutrition. FAO, Rome

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Rev Plant Physiol Plant Mol Biol 40:503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Fatichi S, Leuzinger S, Paschalis A, Langley JA, Donnellan Barraclough A, Hovenden MJ (2016) Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc Natl Acad Sci USA 113:12757–12762. https://doi.org/10.1073/pnas.1605036113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Felton A, Nilsson U, Sonesson J, Felton A, Roberge J, Ranius T, Ahlström M, Bergh J, Björkman C, Boberg J, Drössler L, Fahlvik N, Gong P, Holmström E, Keskitalo E, Klapwijk M, Laudon H, Lundmark T, Niklasson M, Nordin A, Pettersson M, Stenlid J, Sténs A, Wallertz K (2016) Replacing monocultures with mixed-species stands: ecosystem service implications of two production forest alternatives in Sweden. Ambio 45:124–139. https://doi.org/10.1007/s13280-015-0749-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-de-Uña L, McDowell N, Cañellas I, Gea-Izquierdo G (2016) Disentangling the effect of competition, CO2 and climate on intrinsic water-use efficiency and tree growth. J Ecol 104:678–690. https://doi.org/10.1111/1365-2745.12544

    Article  CAS  Google Scholar 

  • Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018) Neighbourhood interactions drive over yielding in mixed-species tree communities. Nat Commun 9:1144. https://doi.org/10.1038/s41467-018-03529-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292. https://doi.org/10.1016/j.foreco.2013.10.003

    Article  Google Scholar 

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35(3):289–304

    Article  PubMed  Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity – productivity relationships in forests. Curr For Rep 2:45–61. https://doi.org/10.1007/s40725-016-0031-2

    Article  Google Scholar 

  • Forrester DI, Bonal D, Dawud S, Gessler A, Granier A, Pollastrini M, Grossiord C (2016) Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol 53:1725–1734. https://doi.org/10.1111/1365-2664.12745

    Article  CAS  Google Scholar 

  • Freeman BG, Class Freeman AM (2014) Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc Natl Acad Sci U S A 111:4490–4494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C et al (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B Biol Sci 282(1801):20142620

    Article  Google Scholar 

  • Galicia L, Zarco-Arista AE (2014) Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: a review. Int J Biodivers Sci Ecosyst Serv Manage 10(4):275–288

    Article  Google Scholar 

  • Gasparatos A, Doll CNH, Esteban M, Ahmed A, Olang TA (2017) Renewable energy and biodiversity: implications for transitioning to a green economy. Renew Sust Energ Rev 70:161–184. https://doi.org/10.1016/j.rser.2016.08.030

    Article  Google Scholar 

  • Gauthier S, Bernier P, Kuuluvainen T, Schvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822

    Article  PubMed  CAS  Google Scholar 

  • Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob Biogeochem Cycles 24:GB3027. https://doi.org/10.1029/2009GB003699

    Article  CAS  Google Scholar 

  • Gessler A, Schaub M, McDowell NG (2017) The role of nutrient in drought-induced tree mortality and recovery. New Phytol 214:513–520. https://doi.org/10.1111/nph.14340

    Article  PubMed  CAS  Google Scholar 

  • González de Andrés E (2019) Interactions between climate and nutrient cycles on forest response to global change: the role of mixed forests. Forests 10(8):609. https://doi.org/10.3390/f10080609

    Article  Google Scholar 

  • González de Andrés E, Seely B, Blanco JA, Imbert JB, Lo YH, Castillo FJ (2017) Increased complementarity in water-limited environments in Scots pine and European beech mixtures under climate change. Ecohydrology 10:e1810. https://doi.org/10.1002/eco.1810

    Article  Google Scholar 

  • González de Andrés E, Camarero JJ, Blanco JA, Imbert JB, Lo YH, Sangüesa-Barreda G, Castillo FJ (2018) Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J Ecol 106:59–75. https://doi.org/10.1111/1365-2745.12813

    Article  CAS  Google Scholar 

  • González de Andrés E, Blanco J, Imbert J, Guan B, Lo Y, Castillo F (2019) ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods. Glob Chang Biol 25:3070–3090. https://doi.org/10.1111/gcb.14672

    Article  PubMed  Google Scholar 

  • Grebner DL, Bettinger P, Siry JP (2013) Forest regions of the world. Chapter 2. In: Grebner DL, Bettinger P, Siry JP (eds) Introduction to forestry and natural resources. Academic, New York, pp 21–76

    Chapter  Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41(6):1141–1159

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Grimm NB, Chapin FS III, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482

    Article  Google Scholar 

  • Grip H, Fritsch JM, Bruijnzeel LA (2005) Soil and water impacts during forest conversion and stabilisation to new land use. In: Bonell M, Bruijnzeel LA (eds) Forest, water and people in the humid tropics, UNESCO international hydrology series. Cambridge University Press, Cambridge, pp 561–589

    Chapter  Google Scholar 

  • Grossiord C (2019) Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol. https://doi.org/10.1111/nph.15667

  • Grossiord C, Granier A, Gessler A, Jucker T, Bonal D (2014a) Does drough influence the relationship between biodiversity and ecosystem functioning in boreal forets? Ecosystems 17:394–404

    Article  CAS  Google Scholar 

  • Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Checko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014b) Tree diversity does not always improve resistance of forest ecosystems to drought. PNAS 111:14812–14815. https://doi.org/10.1073/pnas.1411970111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Güsewell S, Freeman C (2005) Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N: P ratios. Funct Ecol 19:582–593. https://doi.org/10.1111/j.1365-2435.2005.01002.x

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219. https://doi.org/10.1111/j.1365-2435.2008.01478.x

    Article  Google Scholar 

  • Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Selvi F, Bussoti F, JActel H (2015) Tree diversity limits the impact of an invasive forest pest. PLoS One 10(9):e0136469. https://doi.org/10.1371/journal.pone.0136469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes interactions between climate change and land use are projected to cause large shifts in biodiversity. Bioscience 51(9):765–779

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  PubMed  CAS  Google Scholar 

  • Hastik R, Basso S, Geitner C, Haida C, Poljanec A, Portaccio A, Vrščaj B, Walzer C (2015) Renewable energies and ecosystem service impacts. Renew Sust Energ Rev 48:608–623. https://doi.org/10.1016/j.rser.2015.04.004

    Article  Google Scholar 

  • Hendrick RL (2001) Forest types and classification. In: Evans J (ed) The forests handbook, An overview of forest science, vol 1. Blackwell Science, Cambridge, pp 23–64

    Chapter  Google Scholar 

  • Hisano M, Searle EB, Chen HYH (2018) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev 93:439–456

    Article  PubMed  Google Scholar 

  • Holden PB, Edwards NR, Gerten D, Schaphoff S (2013) A model-based constraint on CO2 fertilisation. Biogeosciences 10:339–355. https://doi.org/10.5194/bg-10-339-2013

    Article  Google Scholar 

  • Holland RA, Scott K, Hinton ED, Austen MC, Barrett J, Beaumont N, Blaber-Wegg T, Brown G, Carter-Silk E, Cazenave P, Eigenbrod F, Hiscock K, Hooper T, Lovett A, Papathanasopoulou E, Smith P, Thomas A, Tickner R, Torres R, Taylor G (2016) Bridging the gap between energy and the environment. Energy Policy 92:181–189. https://doi.org/10.1016/j.enpol.2016.01.037

    Article  Google Scholar 

  • Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology 79:704–719. https://doi.org/10.1890/0012-9658(1998)079[0704:TROCAC]2.0.CO;2

    Article  Google Scholar 

  • Ickowitz A, Powell B, Salim MA, Sunderland TCH (2014) Dietary quality and tree cover in Africa. Glob Environ Chang 24:287–294

    Article  Google Scholar 

  • Ickowitz A, Rowland D, Powell B, Salim MA, Sunderland T (2016) Forests, trees, and micronutrient-rich food consumption in Indonesia. PLoS One 11:e0154139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IEA Bioenergy (2002) Sustainable production of woody biomass for energy. A position paper prepared by IEA Bioenergy. Exec. Comm. IEA Bioenergy

    Google Scholar 

  • IEA Bioenergy (2018) Is energy from woody biomass positive for the climate? IEA Bioenergy

    Google Scholar 

  • Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, González-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff E (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep 3:223–243. https://doi.org/10.1007/s40725-017-0064-1

    Article  Google Scholar 

  • Jactel H, Gritti ES, Drössler L, Forrester DI, Mason WL, Morin X, Pretzsch H, Castagneyrol B (2018) Positive biodiversity–productivity relationships in forests: climate matters. Biol Lett 14:20170747. https://doi.org/10.1098/rsbl.2017.0747

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamnadass R, Dawson IK, Anegbeh P, Asaah E, Atangana A, Cordeiro NJ, Hendrickx H, Henneh S, Kadu CAC, Kattah C, Misbah M, Muchugi A, Munjuga M, Mwaura L, Ndangalasi HJ, Njau CS, Nyame SK, Ofori D, Peprah T, Russell J, Rutatina F, Sawe C, Schmidt L, Tchoundjeu ZAC, Simons T (2010) Allanblackia, a new tree crop in Africa for the global food industry: market development, smallholder cultivation and biodiversity management. Forests Trees Livelihoods 19:251–268

    Article  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

    Article  PubMed  CAS  Google Scholar 

  • Jones JA, Wei X, van Noordwijk M, Creed IF, Gush M, Ellison D, Blanco JA, Bishop K, McNulty SG, Archer E, Bargués TA, Bruijinzeel LA, Druinker P, Foster D, Gebrekirstos A, Giles-Hansen K, Hacket-Paim A, Harper RJ, Ilsdt U, Li Q, Liao Y, Malmer A, Mwangi H, Orland C, Steenberg J, Wang Y, Worthy F, Xu J, Zhang M (2018) Forest landscape hydrology in a “new normal” era of climate and land use change. Chapter 4. In: Creed IF, van Noordwijk M (eds) 2018. Forest and water on a changing planet: vulnerability, adaptation and governance opportunities. A global assessment report. IUFRO world series vol 38. Vienna, pp 81–99

    Google Scholar 

  • Jucker T, Bouriaud O, Avacaritei D, Danila I, Duduman G, Valladares F, Coomes D (2014) Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. J Ecol 102:1202–1213. https://doi.org/10.1111/1365-2745.12276

    Article  Google Scholar 

  • Jucker T, Avacariței D, Barnoaiea I, Duduman G, Bouriaud O, Coomes DA (2016) Climate modulates the effects of tree diversity on forest productivity. J Ecol 104:388–398. https://doi.org/10.1111/1365-2745.12522

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020

    Article  PubMed  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12(11):2163–2174

    Article  Google Scholar 

  • Karoshi VR, Nadagoudar BS (2012) Forest plantations for climate change mitigation – reviewing estimates of net primary productivity in forest plantations. Ind J Agric Econ 67(1):157–162

    Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc Natl Acad Sci 112:3241–3246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kishman JJ, van Keuren AE (2017) Altitudinal range shifts of birds at the southern periphery of the boreal forest: 40 years of change in the Adirondack mountains. Wilson J Ornithol 129:742–753

    Article  Google Scholar 

  • Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci USA 113:140–145

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619. https://doi.org/10.2307/2641226

    Article  Google Scholar 

  • Kraft NJ, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322(5901):580–582

    Article  PubMed  CAS  Google Scholar 

  • Kraft NJ, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci 112(3):797–802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234. https://doi.org/10.1093/treephys/tpq055

    Article  PubMed  CAS  Google Scholar 

  • Kumar P (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. UNEP/Earthprint

    Google Scholar 

  • Kunstler G, Falster D, Coomes D, Hui F, Kooyman R, Laughlin D, Poorter L, Vanderwel M, Vieilledent G, Wright S, Aiba M, Baraloto C, Caspersen J, Cornelissen J, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I, Ståhl G, Swenson N, Thompson J, Westerlund B, Wirth C, Zavala M, Zeng H, Zimmerman J, Zimmermann N, Westoby M (2015) Plant functional traits have globally consistent effects on competition. Nature 529:204–207. https://doi.org/10.1038/nature16476

    Article  PubMed  CAS  Google Scholar 

  • Lamarche V, Graybill D, Fritts H, Rose M (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225:1019–1021. https://doi.org/10.1126/science.225.4666.1019

    Article  PubMed  Google Scholar 

  • Laurance WF, Andrade AS, Magrach A et al (2014) Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology 95:3018–3026

    Article  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Syst 41:321–350

    Article  Google Scholar 

  • Lavorel S, Garnier É (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16(5):545–556

    Article  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace M, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.x

    Article  Google Scholar 

  • Lemordant L, Gentine P, Stéfanon M, Drobinski P, Fatichi S (2016) Modication of land-atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude. Geophys Res Lett 43:10,240–10,248. https://doi.org/10.1002/2016GL069896

    Article  CAS  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman M, Dehnen-Schmutz K, Essl F, Hulme P, Richardson D, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493. https://doi.org/10.1111/ele.12003

    Article  PubMed  Google Scholar 

  • Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014) Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol 203:94–109. https://doi.org/10.1111/nph.12772

    Article  PubMed  CAS  Google Scholar 

  • Lévesque M, Walthert L, Weber P (2016) Soil nutrients influence growth response of temperate tree species to drought. J Ecol 104:377–387. https://doi.org/10.1111/1365-2745.12519

    Article  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  PubMed  CAS  Google Scholar 

  • Li W (1993) China’s biodiversity. Science Press, Beijing

    Google Scholar 

  • Li N (2014) Sustainable forest management in China: achievements in the past and challenges ahead. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century, Forestry sciences, vol 81. Springer, Dordrecht

    Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:6309. https://doi.org/10.1126/science.aaf8957

    Article  CAS  Google Scholar 

  • Lim H, Oren R, Linder S, From F, Nordin A, Fahlvik N, Lundmark T, Näsholm T (2017) Annual climate variation modifies nitrogen induced carbon accumulation of Pinus sylvestris forests. Ecol Appl 27:1838–1851. https://doi.org/10.1002/eap.1571

    Article  PubMed  Google Scholar 

  • Linares JC, Camarero JJ (2012) From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Chang Biol 18:1000–1015. https://doi.org/10.1111/j.1365-2486.2011.02566.x

    Article  Google Scholar 

  • Lindner M, Maroscheck M, Netherer S, Kremer A, Barbati A, García-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259(4):698–709

    Article  Google Scholar 

  • Lindstad BH, Pistorius T, Ferranti F, Dominguez G, Gorriz-Mifsud E, Kurttila M, Leban V, Navarro P, Peters DM, Pezdevsek Malovrh S, Prokofieva I, Schuck A, Solberg B, Viiri H, Zadnik Stirn L, Krc J (2015) Forest-based bioenergy policies in five European countries: an explorative study of interactions with national and EU policies. Biomass Bioenergy 80:102–113. https://doi.org/10.1016/j.biombioe.2015.04.033

    Article  Google Scholar 

  • Liu W, Meng FR, Zhang Y, Liu Y, Li H (2004) Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, south-West China. J Trop Ecol 20:517–524

    Article  Google Scholar 

  • Lo YH, Blanco JA, Kimmins JP, Seely B, Welham C (2011) Linking climate change and forest ecophysiology to project future trends in tree growth: a review of forest models. In: Blanco JA, Kheradmand H (eds) Climate change – research and technology for adaptation and mitigation. InTech, Rijeka, Croatia, pp 63–86. ISBN: 979-953-307-278-3

    Google Scholar 

  • Lo YH, Blanco JA, González de Andrés E, Imbert JB, Castillo FJ (2019) CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the Pyrenees. Ecol Model 407:108737. https://doi.org/10.1016/j.ecolmodel.2019.108737

    Article  CAS  Google Scholar 

  • MAE-GIZ-IKIAM (2017) Management plan for the Colonso Chalupas Biological Reserve Ministry of the Environment of Ecuador, German Development Agency and IKIAM Amazon Regional University. Ministry of the Environment of Ecuador, German Development Agency and IKIAM Amazon Regional University, Tena, 105p

    Google Scholar 

  • MacDicken KG (2015) Global forest resources assessment: what, why and how? For Ecol Manag 352:3–8

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Li BL (2013) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys 13:1039–1056

    Article  CAS  Google Scholar 

  • Makungwa SD, Epulani F, Woodhouse IH (2013) Fuelwood supply: a missed essential component in a food security equation. J Food Secur 1:49–51

    Google Scholar 

  • Malizia L, Pacheco S, Blundo C, Brown AD (2012) Altitudinal characterization, use and conservation of the Subtropical Yungas of Argentina. Ecosystems 21(1–2):53–73

    Google Scholar 

  • Marañón T, Ibáñez B, Anaya-Romero M, Muñoz-Rojas M (2012a) Status and trend of the services of the forest ecosystems of Andalusia. In: Evaluation of the millennium ecosystem in Andalusia. Ministry of Environment, Junta de Andalucía

    Google Scholar 

  • Marañón T, Ibáñez B, Anaya-Romero M, Muñoz-Rojas M, Pérez-Ramos IM (2012b) Oak trees and woodlands providing ecosystem services in Southern Spain. In: Rotherham ID, Handley C, Agnoletti M, Samojlik T (eds) Trees beyond the wood. An exploration of concepts of woods, forests and trees. Wildtrack Publishing, Sheffield, pp 369–378. ISBN 978-1-904098-40-9

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot–root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263. https://doi.org/10.1093/jxb/47.Special_Issue.1255

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Vilalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Chang Biol 14:2868–2881. https://doi.org/10.1111/j.1365-2486.2008.01685.x

    Article  Google Scholar 

  • Mateos E, Garrido F, Ormaetxea L (2016) Assessment of biomass energy potential and forest carbon stocks in Biscay (Spain). Forests 7. https://doi.org/10.3390/f7040075

  • Matthews R, Sokka L, Soimakallio S, Mortimer N, Rix J, Schelhaas M, Jenkins T, Hogan G, Mackie E, Morris A, Randle T (2014) Review of literature on biogenic carbon and life cycle assessment of forest bioenergy: final task 1 report, EU DG ENER project ENER/C1/427, ‘Carbon impacts of biomass consumed in the EU’. Forest Research, Farnham

    Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. https://doi.org/10.1104/pp.110.170704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDowell NG, Pockman WT, Allen CD, Brehears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401. https://doi.org/10.1890/03-0351

    Article  Google Scholar 

  • McLaughlin SB, Nosal M, Wullschleger SD, Sun G (2007) Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytol 174(1):109–124

    Article  PubMed  CAS  Google Scholar 

  • McNulty SG, Boggs JL, Sun G (2014) The rise of the mediocre forest: why chronically stressed trees may better survive extreme episodic climate variability. New For 45(3):403–415

    Google Scholar 

  • McNulty S, Treasure E, Jennings L et al (2018) Translating national level forest service goals to local level land management: carbon sequestration. Clim Chang 146:133–144. https://doi.org/10.1007/s10584-017-2046-5

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

    Article  PubMed  PubMed Central  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–9512. https://doi.org/10.1073/pnas.1018189108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza Orellana A (2012) Sabiduría de la Cultura Kichwa de la Amazonía Ecuatoriana. Universidad de Cuenca, Cuenca

    Google Scholar 

  • Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze ED, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Chang Biol 22:903–920. https://doi.org/10.1111/gcb.13113

    Article  PubMed  Google Scholar 

  • Millard CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823–826

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mina M, Huber MO, Forrester DI, Thürig E, Rohner B (2018) Multiple factors modulate tree growth complementarity in Central European mixed forests. J Ecol 106:1106–1119. https://doi.org/10.1111/1365-2745.12846

    Article  Google Scholar 

  • Ministry of the Environment of Ecuador (2012) Classification system of ecosystems in continental Ecuador. Undersecretariat of Natural Heritage, Quito

    Google Scholar 

  • Molina L (2018) Ecosystem provision, regulation and cultural services in plantain cultivation, Colombian coffee axis. Technological University of Pereira. Retrieved from http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9699/T634.773%20M722.pdf?sequence=1&isAllowed=y

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F et al (2012) Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–782. https://doi.org/10.1890/11-0721.1

    Article  PubMed  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00022

    Article  Google Scholar 

  • Morin X, Roy J, Soniè L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186(4):900–910

    Article  PubMed  Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–1535. https://doi.org/10.1111/ele.12357

    Article  PubMed  Google Scholar 

  • Morin X, Fahse L, Jactel H, Scherer-Lorenzen M, García-Valdés R, Bugmann H (2018) Long-term response of forest productivity to climate change is mostly driven by change in species composition. Nature 8:5627. https://doi.org/10.1038/s41598-018-23763-y

    Article  CAS  Google Scholar 

  • Moritz MA, Parisien M-A, Batlori E, Krwchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3:1–22

    Article  Google Scholar 

  • Muñoz-Villers L, Holwerda F, Alvarado-Barrientos M, Geissert D, Marín-Castro B, Gomez-Tagle A (2015) Hydrological effects of cloud forest conversion in central Veracruz, Mexico. Forest 36:395–407

    Google Scholar 

  • Nabuurs G, Delacote P, Ellison D, Hanewinkel M, Lindner M, Nesbit M, Ollikainen M, Savaresi A (2015) A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to Policy 2. European Forest Institute

    Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2(1–2):75–79

    Article  Google Scholar 

  • Nasi R, Taber A, Van Vliet N (2011) Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int For Rev 13:355–368

    Google Scholar 

  • National Institute of Statistics and Censuses (2002) Dissemination of definitive results of the VI population and housing census 2001 – July 2002. National Institute of Statistics and Censuses – INEC

    Google Scholar 

  • National Institute of Statistics and Censuses (2010) Population and housing census 2010. National Institute of Statistics and Censuses – INEC

    Google Scholar 

  • Navarro-Cerrillo RM, Duque-Lazo J, Manzanedo RD, Sánchez-Salguero R, Palacios-Rodriguez G (2018) Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: an ensemble niche-based approach. iForest 11:396–405

    Article  Google Scholar 

  • Nicholls D, Halbrook J, Benedum M, Han HS, Lowell E, Becker D, Barbour R (2018) Socioeconomic constraints to biomass removal from forest lands for fire risk reduction in the Western US. Forests 9(5):264

    Article  Google Scholar 

  • Nolander C, Lundmark R (2016) Ecosystem services in forest sector models: a review. In: Meeting Sweden’s current and future energy challenges. Luleå tekniska universitet

    Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714. https://doi.org/10.1046/j.1365-3040.1999.00391.x

    Article  CAS  Google Scholar 

  • Ochoa-Ochoa LM, Mejía-Domínguez NR, Bezaury-Creel J (2017) Prioritization for the conservation of cloud forests in Mexico. Ecosystems 26(2):27–37

    Google Scholar 

  • Ovando P (2017) Environmental services in the times of the forest bioeconomy. Challenges and opportunities in the Mediterranean bush. Notebooks Spanish Soc For Sci 43:1–18

    Google Scholar 

  • Palacios W, Cerón C, Valencia R, Sierra R (1999) The natural formations of the Amazon of Ecuador. In: Sierra R (ed) Preliminary proposal for a vegetation classification system for continental Ecuador. INEFAN/GEF-BIRF and Ecociencia project, Quito, pp 109–119

    Google Scholar 

  • Pan Y, Birdsey R, Fang J, Houghton R, Kauppi P, Kurz W, Phillips O, Shvidenko A, Lewis S, Canadell J, Ciais P, Jackson R, Pacala S, McGuire A, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  PubMed  CAS  Google Scholar 

  • Pandey D, Ball J (1998) The role of industrial plantations in future global fibre supply. Unasylva 193(49):37–43

    Google Scholar 

  • Parton W, Silver WL, Bruke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. https://doi.org/10.1126/science.1134853

    Article  PubMed  CAS  Google Scholar 

  • Pašakarnis G, Morley D, Malienė V (2013) Rural development and challenges establishing sustainable land use in Eastern European countries. Land Use Policy 30(1):703–710

    Article  Google Scholar 

  • Paumgarten F, Locatelli B, Witkowski ETF (2018) Wild foods: safety net or poverty trap? A south African case study. Hum Ecol 46:183–195

    Article  Google Scholar 

  • Pectl GT, Araújo MB, Bell JD, Blanchar J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human-wellbeing. Science 355:1389–1398

    Google Scholar 

  • Peñuela-Mora MC, Schwarz A, Monteros-Altamirano Á, Zurita-Benavides MG, Cayapa R, Romero N (2016) Agrobiodiversity guide. IKIAM Regional Amazon University, Tena. Retrieved from www.ikiam.edu.ec

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140

    Article  Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump S, A. (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in catalonia (NE spain). Ecography 30(6):829–837

    Article  Google Scholar 

  • Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Chang Biol 14:1076–1088. https://doi.org/10.1111/j.1365-2486.2008.01563.x

    Article  Google Scholar 

  • Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608. https://doi.org/10.1111/j.1466-8238.2010.00608.x

    Article  Google Scholar 

  • Perry DA, Oren R, Hart SC (2008) Forest ecosystems. The Johns Hopkins University Press, Baltimore

    Book  Google Scholar 

  • Peters DM, Wirth K, Böhr B, Ferranti F, Górriz-Mifsud E, Kärkkäinen L, Krč J, Kurttila M, Leban V, Lindstad BH, Pezdevšek Malovrh Š, Pistorius T, Rhodius R, Solberg B, Zadnik Stirn L (2015) Energy wood from forests – stakeholder perceptions in five European countries. Energy Sustain Soc 5. https://doi.org/10.1186/s13705-015-0045-9

  • Pimentel D, McNair M, Buck L, Pimentel M, Kamil J (1997) The value of forests to world food security. Hum Ecol 25:91–120

    Article  Google Scholar 

  • Pinilla V, Ayuda MI, Sáez LA (2008) Rural depopulation and the migration turnaround in Mediterranean Western Europe: a case study of Aragon. J Rural Commun Dev 3(1):1–22

    Google Scholar 

  • Pires APF, Srivastava DS, Marino NAC, MacDonald AAM, Figueiredo-Barros MP, Farjalla VF (2018) Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99:1203–1213

    Article  PubMed  Google Scholar 

  • Poorter L, Wright S, Paz H, Ackerly D, Condit R, Ibarra-Manríquez G, Harms K, Licona J, Martínez-Ramos M, Mazer S, Muller-Landau H, Peña-Claros M, Webb C, Wright I (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920. https://doi.org/10.1890/07-0207.1

    Article  PubMed  CAS  Google Scholar 

  • Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178:31–45. https://doi.org/10.1016/j.agrformet.2012.12.006

    Article  Google Scholar 

  • Prăvălie R (2018) Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth Sci Rev 185:544–571

    Article  Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200. https://doi.org/10.1093/treephys/22.15-16.1193

    Article  PubMed  CAS  Google Scholar 

  • Pressler Y, Moore JC, Cotrufo MF (2018) Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128:309–327

    Article  Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264

    Article  Google Scholar 

  • Pretzsch H, del Río M, Ammer C et al (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J Forest Res 134:927–947. https://doi.org/10.1007/s10342-015-0900-4

    Article  Google Scholar 

  • Primicia I, Camarero JJ, Imbert JB, Castillo FJ (2013) Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate. Eur J For Res 132:121–135. https://doi.org/10.1007/s10342-012-0662-1

    Article  Google Scholar 

  • Provincial Decentralized Autonomous Government of Napo- GADPN (2015) Territorial planning and development plan of the Napo Province. GADPN

    Google Scholar 

  • Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Curr For Rep 4:35–50

    Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJ, Cappa JJ, Fakra SC, Marcus MA, Lindblom SD et al (2010) Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecol 10(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranius T, Hämäläinen A, Egnell G, Olsson B, Eklöf K, Stendahl J, Rudolphi J, Sténs A, Felton A (2018) The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J Environ Manag 209:409–425. https://doi.org/10.1016/j.jenvman.2017.12.048

    Article  Google Scholar 

  • Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B et al (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett 20:1414–1426. https://doi.org/10.1111/ele.12849

    Article  PubMed  Google Scholar 

  • Reed J, van Vianen J, Foli S, Clendenning J, Yang K, MacDonald M, Petrokofsky G, Padoch C, Sunderland T (2017) Trees for life: the ecosystem service contribution of trees to food production and livelihoods in the tropics. Forest Policy Econ 84:62–71

    Article  Google Scholar 

  • Regehr DL, Bazzaz FA, Boggess WR (1975) Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to flooding and drought. Photosynthetica 9:52–61

    Google Scholar 

  • Rodrigues T, Braghini Junior A (2019) Technological prospecting in the production of charcoal: A patent study. Renew Sust Energ Rev 111:170–183. https://doi.org/10.1016/j.rser.2019.04.080

    Article  CAS  Google Scholar 

  • Rossi S, Deslauriers A, Gricar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707. https://doi.org/10.1111/j.1466-8238.2008.00417.x

    Article  Google Scholar 

  • Saatchi SS, HoughtonO RA, Dos Santos Alvalà RC, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Chang Biol 13(4):816–837. https://doi.org/10.1111/j.1365-2486.2007.01323.x

    Article  Google Scholar 

  • Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc Natl Acad Sci USA 106:20348–20353. https://doi.org/10.1073/pnas.0903029106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandström K (1998) Can forests “provide” water: widespread myth or scientific reality? Ambio 27(2):132–138

    Google Scholar 

  • San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) (2016) European Atlas of forest tree species. Publication Office of the European Union, Luxembourg. ISBN: 978-92-79-52833-0. https://doi.org/10.2788/038466

  • Sardans J, Rivas-Ubach A, Estiarte M, Ogaya R, Peñuelas J (2013) Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forests and shrublands. Acta Oecologica 50:20–31. https://doi.org/10.1016/j.actao.2013.04.002

    Article  Google Scholar 

  • Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, Piao S, Peñuelas J (2017) Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob Change Biol 23:1–8. https://doi.org/10.1111/gcb.13721

    Article  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2002) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399

    Article  Google Scholar 

  • Scheffers BR, de Meester L, Bridge TCL, Hoffman AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science 354:719–730

    Article  CAS  Google Scholar 

  • Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852

    Article  Google Scholar 

  • SFAPRC (2016) National Forest Management Plan (2016–2050) [online]. Available from: http://www.forestry.gov.cn/main/58/content-892769.html

  • Sheil D (2014) How plants water our planet: advances and imperatives. Trends Plant Sci 19:209–211

    Article  PubMed  CAS  Google Scholar 

  • Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–347

    Article  Google Scholar 

  • Shvidenko A, Barber CB, Persson R, González P, Hassan R, Lakyda P, McCallum I, Nilsson S, Pulhin J, van Rosenburg B, Scholes B (2005) Forest and woodland systems. In: Hassan R, Scholes R (eds) Ecosystems and human wellbeing current state and trend. Island Press, USA, pp 585–621

    Google Scholar 

  • Silva LCR, Anand M (2013) Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob Ecol Biogeogr 22:83–92. https://doi.org/10.1111/j.1466-8238.2012.00783.x

    Article  Google Scholar 

  • Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS One 5:e11543. https://doi.org/10.1371/journal.pone.0011543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simons H et al (2001) Global ecological zoning for the Global forest resources assessment 2000 – final report, Forest Resources Assessment Working Paper, vol 56. Food and Agriculture Organization of the United Nations, Forestry Department, Rome

    Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–285

    Article  PubMed  CAS  Google Scholar 

  • Stadlmayr B, Charrondière UR, Eisenwagen S, Jamnadass R, Kehlenbeck K (2013) Nutrient composition of selected indigenous fruits from sub-Saharan Africa. J Sci Food Agric 93:2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Steidinger B, Crowther T, Liang J, Van Nuland M, Werner G, Reich P, Nabuurs G, de-Miguel S, Zhou M, Picard N, Herault B, Zhao X, Zhang C, Routh D, Peay K (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–408. https://doi.org/10.1038/s41586-019-1128-0

    Article  PubMed  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere (439 pp). Princeton University Press, Princeton

    Google Scholar 

  • Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, Kessler M, Gesner MO (2012) Biodiversity effects on ecosystem functioning change along environmental stress gradientes. Ecol Lett 15:1397–1405

    Article  PubMed  Google Scholar 

  • Sun G, Caldwell P, Noormets A, McNulty SG, Cohen E, Moore Myers J, Domec JC et al (2011) Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. J Geophys Res Biogeo 116(G3)

    Google Scholar 

  • Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–647. https://doi.org/10.1111/ele.12600

    Article  PubMed  Google Scholar 

  • Trumbore S, Brando P, Hartman H (2015) Forest health and global change. Science 349:814–818

    Article  PubMed  CAS  Google Scholar 

  • Uprety Y, Asselin H, Dhakal A, Julien N (2012) Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives. J Ethnobiol Ethnomed 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Urli M, Delzon S, Eyermann A, Couallier V, García-Valdés R, Zavala MA, Porté AJ (2013) Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the iberian mountains. J Veg Sci 25(1):147–159

    Article  Google Scholar 

  • Valencia-Leguizamon J, Tobón Marín C (2017) Influence of vegetation on the hydrological functioning of tropical high mountain wetlands basins. Ecosistemas 26:10–17. https://doi.org/10.7818/ecos.2017.26-2.02

    Article  Google Scholar 

  • Valladares F, Benavides R, Rabasa SG, Díaz M, Pausas JG, Paula S, Simonson WD (2014) Global change and Mediterranean forests: current impacts and potential responses. In: Coomes DA, Burslem DFRP, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge

    Google Scholar 

  • Van der Ent RJ, Savenije HH, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525

    Google Scholar 

  • van der Hoek Y, Jensen R, Salagaje LA, Ordóñez-Delgado L (2018) A preliminary list of the birds of the foothills and south- eastern buffer zone of Colonso Chalupas Biological. Cotinga 40(May):12–22

    Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nature Geosci 3(11):756

    Article  CAS  Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (eds) (2020a) Global climate change: resilient and smart agriculture. Springer Nature, Singapore

    Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (eds) (2020b) Global climate change and environmental policy: agriculture perspectives. Springer Nature, Singapore

    Google Scholar 

  • Verheyen K et al (1999) The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128

    Article  Google Scholar 

  • Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS One 8:e53530. https://doi.org/10.1371/journal.pone.0053530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villamagna A, Giesecke C (2014) Adapting human well-being frameworks for ecosystem service assessments. Ecol Soc 19(1):1–18

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  • Vira B, Wildburger C, Mansourian S (2015) Forests, trees and landscapes for food security and nutrition – a global assessment report, IUFRO world series. International Union of Forest Research Organizations (IUFRO), Vienna, p 172

    Google Scholar 

  • Vitali V, Forrester DI, Bauhus J (2018) Know your neighbours: drought response of Norway spruce, silver fir and Douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems:1–15. https://doi.org/10.1007/s10021-017-0214-0

  • Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8:1017–1030

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B, Bradley R (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  • Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004) Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23:803–810. https://doi.org/10.1016/j.quascirev.2003.06.011

    Article  Google Scholar 

  • WBA (2018) WBA Global Bioenergy Statistics 2018. World Bioenergy Association

    Google Scholar 

  • Wei X, Blanco JA, Jiang H, Kimmins JP (2012) Effects of nitrogen deposition on carbon sequestration in Chinese fir forests. Sci Total Environ 416:351–361. https://doi.org/10.1016/j.scitotenv.2011.11.087

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Blanco JA (2014) Significant increase in forest carbon can be achieved by implementing sustainable forest management. PLoS One 9(2):e89688. https://doi.org/10.1371/journal.pone.0089688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21(5):261–268

    Article  PubMed  Google Scholar 

  • Winfree R, Williams NM, Gaines H, Ascher JS, Kremen C (2008) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J Appl Ecol 45:793–802

    Article  Google Scholar 

  • Woziwoda B, Dyderski MK, Jagodziński AM (2019) Effects of land use change and Quercus rubra introduction on Vaccinium myrtillus performance in Pinus sylvestris forests. For Ecol Manag 440:1–11

    Article  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE et al (2010) Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91(12):3664–3674

    Article  PubMed  Google Scholar 

  • Xu H (1998) Forests in Daxing’anling Mountains China. Science Press, Beijing

    Google Scholar 

  • Yaguache R, Andi L, Andi V, Tanguila J, De C, Bonilla N, Borja K (2016) Diagnóstico socioeconómico y ambiental en las comunidades del área de amortiguamiento de la Reserva Biológica Colonso Chalupas, 1–50

    Google Scholar 

  • Yuan ZY, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542. https://doi.org/10.1111/j.1466-8238.2009.00474.x

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2015) Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang 5:465–469. https://doi.org/10.1038/nclimate2549

    Article  CAS  Google Scholar 

  • Yuan Z, Wang S, Ali A, Gazol A, Ruiz-Benito P, Wang X, Lin F, Ye J, Hao Z, Loreau M (2018) Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Ann For Sci 7:67. https://doi.org/10.1007/s13595-018-0745-3

    Article  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155. https://doi.org/10.1890/14-0777.1

    Article  Google Scholar 

  • Zhang Y (2007) Ecosystems and human well-being: a framework for assessment. China Environmental Science Press, Beijing

    Google Scholar 

  • Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. https://doi.org/10.1093/jpe/rtn002

    Article  Google Scholar 

  • Zhang Y, Cheng HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749. https://doi.org/10.1111/j.1365-2745.2011.01944.x

    Article  Google Scholar 

  • Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247. https://doi.org/10.1016/j.ecocom.2014.01.003

    Article  CAS  Google Scholar 

  • Zhang R, Rong Y, Tian J, Su H, Li ZL, Liu S (2015) A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale. Remote Sens 7(5):6005–6025

    Article  Google Scholar 

  • Zhou J, Deng Y, Shen L, Wn C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weser MD, Kaspari M, Waide R, Yang Y, Brown JH (2015) Temperature mediates continental-scale diversity of microbes in forest soils. Nature Commun 7:12083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imbert, J.B. et al. (2021). Synergies Between Climate Change, Biodiversity, Ecosystem Function and Services, Indirect Drivers of Change and Human Well-Being in Forests. In: Venkatramanan, V., Shah, S., Prasad, R. (eds) Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals . Springer, Singapore. https://doi.org/10.1007/978-981-15-7301-9_12

Download citation

Publish with us

Policies and ethics