Skip to main content

Some connections between set theory and computer science

  • Invited Papers
  • Conference paper
  • First Online:
Computational Logic and Proof Theory (KGC 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 713))

Included in the following conference series:

Abstract

Methods originating in theoretical computer science for showing that certain decision problems are NP-complete have also been used to show that certain compactness theorems are equivalent in ZF set theory to the Boolean Prime Ideal Theorem (BPI). Conversely, there is some evidence that set theoretic methods connnected with research on BPI may prove useful in computer science. We survey what is known and then look at some new examples and explore the underlying reasons for the successful application of quite similar methods to solve different problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abian: Generalized completeness theorem and solvability of systems of boolean polynomial equations, Zeitschrift für Mathematische Logik, 16(1970), 263–264.

    Google Scholar 

  2. B. Banaschewski: The power of the ultra-filter theorem, Journal of the London Mathematical Society, ser. 2, 27(1983), 193–202.

    Google Scholar 

  3. R. Cowen: Some combinatorial theorems equivalent to the prime ideal theorem, Proceedings of the American Mathematical Society, 41(1973), 268–273.

    Google Scholar 

  4. R. Cowen: Partition principles for properties of finite character, Reports on Mathematical Logic, 14(1982), 23–28.

    Google Scholar 

  5. R. Cowen: Compactness via prime semilattices, Notre Dame Journal of Formal Logic, 24(1983), 199–204.

    Google Scholar 

  6. L. Cowen, R. Cowen, D. Woodall: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory, 10(1986), 187–195.

    Google Scholar 

  7. R. Cowen: Two hypergraph theorems equivalent to BPI, Notre Dame Journal of Formal Logic, 31(1990), 232–239.

    Google Scholar 

  8. R. Cowen: Hypergraph Satisfiability, Reports on Mathematical Logic, 24(1991), 113–118.

    Google Scholar 

  9. R. Cowen: Combinatorial Analytic Tableaux, to appear.

    Google Scholar 

  10. M. Frick: A survey of (m,k)-colorings. In J. Gimbel, J.W. Kennedy, L.V. Quintas (eds.): Quo Vadis, Graph Theory? (Annals of Discrete Math 55), North Holland, 1993.

    Google Scholar 

  11. M. Garey, D. Johnson: Computers and Intractability, W. H. Freeman, San Francisco, 1979.

    Google Scholar 

  12. L. Henkin: Boolean representation through propositional calculus, Fundamenta Mathematica, 41(1954), 89–96.

    Google Scholar 

  13. P. Howard: Binary consistent choice on pairs and a generalization of König's infinity lemma, Fundamenta Mathematica, 121(1983), 31–37.

    Google Scholar 

  14. P. Howard: Weak forms of the Axiom of Choice, unpublished.

    Google Scholar 

  15. T. Jech: The Axiom of Choice, North Holland, Amsterdam, 1973.

    Google Scholar 

  16. A. Kolany: Satisfiability on hypergraphs, Studia Logica, to appear.

    Google Scholar 

  17. A. Kolany, P. Wojtylak: Restricted versions of the compactness theorem, Reports on Mathematical Logic, 25(1991), 91–103.

    Google Scholar 

  18. H. Läuchli: Coloring infinite graphs and the Boolean prime ideal theorem, Israel Journal of Mathematics, 9(1971), 422–429.

    Google Scholar 

  19. A. Levy: Remarks on a paper by J. Mycielski, Acta Mathematica Academiae Sceintiarum Hungaricae, 14(1963), 125–130.

    Google Scholar 

  20. J. Łós, C. Ryll-Nardzewski: On the application of Tychonoff's theorem in mathematical proofs, Fundamenta Mathematica, 38(1951), 233–237.

    Google Scholar 

  21. J. Łós, C. Ryll-Nardzewski: Effectiveness of the representation theory for Boolean algebras, Fundamenta Mathematica, 41(1955), 49–56.

    Google Scholar 

  22. J. Mycielski: Some remarks and problems on the coloring of infinite graphs and the theorem of Kuratowski, Acta Mathematica Academiae Scientiarum Hungaricae, 14(1963), 125–130. Errata, ibid., 18(1967), 339–340.

    Google Scholar 

  23. J. Mycielski: Two remarks on Tychonoff's product theorem, Bulletin Academie Polonaise des Sciences, 12(1964), 439–441.

    Google Scholar 

  24. Y. Rav: Variants of Rado's Selection Lemma, and their applications, Mathematische Nachrichten, 79(1977), 145–165.

    Google Scholar 

  25. H. Rubin, D. Scott: Some topological theorems equivalent to the Boolean prime ideal theorem, Bulletin of the American Mathematical Society, 60(1954), 389.

    Google Scholar 

  26. T. Schaefer: The complexity of satisfiability problems, Proceedings of the 10th Annual ACM Symposium on the Theory of Computing, 216–226, 1978.

    Google Scholar 

  27. T. Schaefer: Complexity of decision problems based on finite two-person perfectinformation games, Proceedings of the 8th Annual ACM Symposium on the Theory of Computing, 41–49. 1976.

    Google Scholar 

  28. A. Schrijver: The dependence of some logical axioms on disjoint transversals and linked systems, Colloquium Mathematicum, 39(1978), 191–199.

    Google Scholar 

  29. D. Scott: Prime ideal theorems for rings, lattices and Boolean algebras, Bulletin of the American Mathematical Society, 60(1954), p. 390.

    Google Scholar 

  30. L. Stockmeyer: Planar 3-colorability is polynomial complete, SIGACT News 5, 3(July 1973), 19–25.

    Google Scholar 

  31. D. Woodall: Property B and the four-colour problem. In: D.J.A. Welsh, D.R. Woodall(eds.): Combinatorics, IMA, 1972.

    Google Scholar 

  32. D. Woodall: Improper colourings of graphs. In: R. Nelson, R.J. Wilson(eds.): Graph Colourings, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Georg Gottlob Alexander Leitsch Daniele Mundici

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cowen, R. (1993). Some connections between set theory and computer science. In: Gottlob, G., Leitsch, A., Mundici, D. (eds) Computational Logic and Proof Theory. KGC 1993. Lecture Notes in Computer Science, vol 713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022548

Download citation

  • DOI: https://doi.org/10.1007/BFb0022548

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57184-1

  • Online ISBN: 978-3-540-47943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics