Skip to main content

Quantum wires as Luttinger liquids: theory

  • Correlations and Disorder
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

The present understanding of the physics of correlated electrons in quantum wires is summarized in terms of non-Fermi liquid collective excitations. The latter are determined within the Luttinger liquid model by using the bosonization technique. Charge and spin density modes are derived. Comparison with the data from resonant Raman scattering experiments indicates that interactions dominate the low-frequency collective excitations. The latter are determined within the Luttinger liquid model by using the bosonization technique. Charge and spin density modes are derived. Comparison with the data from resonant Raman scattering experiments indicates that interactions dominate the low-frequency collective modes in semiconductor quantum wires. Former “single particle excitations” in the resonant Raman spectra have been found to be due to higher-order spin modes that appear in both polarizations of incident and scattered light. The interplay in the non-linear DC-transport properties of a Luttinger liquid model with two impurities between interaction, spin, and backscattering by the impurities is discussed and compared with recent experiments. The results indicate that linear transport probes the global properties of the system, including the leads and the contacts. On the other hand, the non-linear differential conductance probes the local correlations near the electron island between the impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Yacoby, H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Sol. St. Commun. 101, 77 (1997).

    Article  ADS  Google Scholar 

  2. O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett 84, 1764 (2000).

    Article  ADS  Google Scholar 

  3. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  5. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  6. J. Voit, Rep. Prog. Phys. 57, 977 (1995).

    Article  ADS  Google Scholar 

  7. H. J. Schulz, in: Mesoscopic Quantum Physics, E. Akkermans, G. Montambaux, J.-L. Pichard, J. Zinn-Justin (Eds.), (Elsevier, Amsterdam 1995), p. 533.

    Google Scholar 

  8. M. Sassetti, in: Quantum Transport in Semiconductor Submicron Structures, B. Kramer (Ed.) (Kluwer, Dordrecht 1996), p. 95.

    Google Scholar 

  9. M. Sassetti, B. Kramer, Phys. Rev. Lett. 80, 1485 (1998).

    Article  ADS  Google Scholar 

  10. M. Sassetti, B. Kramer, Eur. Phys. J. B 4, 357 (1998).

    Article  ADS  Google Scholar 

  11. C. L. Kane, and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).

    Article  ADS  Google Scholar 

  12. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature 397, 598 (1999).

    Article  ADS  Google Scholar 

  13. S. Tarucha, T. Honda, and T. Saku, Sol. St. Commun. 94, 413 (1995).

    Article  ADS  Google Scholar 

  14. A. Yacoby, H. L. Stormer, Ned S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

    Article  ADS  Google Scholar 

  15. W. Wegscheider et al., this volume.

    Google Scholar 

  16. B. Kramer, and M. Sassetti, unpublished.

    Google Scholar 

  17. T. Kleimann, M. Sassetti, B. Kramer, and A. Yacoby, unpublished (2000).

    Google Scholar 

  18. D. Weinmann, W. Häusler and B. Kramer, Phys. Rev. Lett. 74, 984 (1995); Ann. Phys. (Leipzig) 5, 652 (1996).

    Article  ADS  Google Scholar 

  19. M. Sassetti, F. Napoli, and B. Kramer, Phys. Rev. B 59, 7297 (1999); and Eur. Phys. J. B 11, 643 (1999).

    Article  ADS  Google Scholar 

  20. E. Mariani, M. Sassetti, and B. Kramer, Europhys. Lett. 49, 224 (2000); Ann. Phys., (Leipzig) 8, 161 (1999).

    Article  ADS  Google Scholar 

  21. F. A. Blum, Phys. Rev. B 1, 1125 (1970).

    Article  ADS  Google Scholar 

  22. A. Pinczuk, L. Brillson, E. Burstein, and E. Anastassakis, Phys. Rev. Lett. 27, 317 (1971).

    Article  ADS  Google Scholar 

  23. M. V. Klein, in Light Scattering in Solids, edited by M. Cardona (Springer Verlag, Berlin, 1975), p. 147.

    Google Scholar 

  24. M. Sassetti, B. Kramer, Ann. Phys. (Leipzig), 7, 483 (1998).

    Article  Google Scholar 

  25. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. M. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 67, 3298 (1991).

    Article  ADS  Google Scholar 

  26. A. Schmeller, A. R. Goñi, A. Pinczuk, J. S. Weiner, J. M. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 49, 14778 (1994).

    Article  ADS  Google Scholar 

  27. R. Strenz, U. Bockelmann, F. Hirler, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 3022 (1994).

    Article  ADS  Google Scholar 

  28. C. Schüller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P. Gambow, and K. Eberl, Phys. Rev. B 54, R17304 (1996).

    Article  ADS  Google Scholar 

  29. F. Perez, B. Jusserand, and B. Etienne, Physica E, in press (1999).

    Google Scholar 

  30. A. Goñi, unpublished results.

    Google Scholar 

  31. M. Sassetti, B. Kramer, Phys. Rev. B 54, R5203 (1996).

    Article  ADS  Google Scholar 

  32. A. Furusaki, N. Nagaosa, Phys. Rev. B 47, 3827 (1993).

    Article  ADS  Google Scholar 

  33. M. Sassetti, F. Napoli, and U. Weiss, Phys. Rev. B 52, 11213 (1995).

    Article  ADS  Google Scholar 

  34. A. Furusaki, Phys. Rev. B 57, 7141 (1998).

    Article  ADS  Google Scholar 

  35. A. Braggio, M. Grifoni, M. Sassetti, and F. Napoli, Europhys. Lett. 50, 236 (2000).

    Article  ADS  Google Scholar 

  36. E. Lieb, D. Mattis, Phys. Rev. 125, 164 (1962).

    Article  MATH  ADS  Google Scholar 

  37. A. Yacoby, private communication.

    Google Scholar 

  38. K. Jauregui, W. Häussler, D. Weinmann, B. Kramer, Phys. Rev. B53, R1713 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Additional information

Dedicated to Prof. Franz Wegner on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Sassetti, M., Kramer, B. (2000). Quantum wires as Luttinger liquids: theory. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108349

Download citation

  • DOI: https://doi.org/10.1007/BFb0108349

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics