Skip to main content

Disorder, electron-electron interactions and the metal-insulator transition in heavily doped Si:P

  • Correlations and Disorder
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

Electron localization in a metal, ultimately leading to a metal-insulator (MI) transition, can occur because of disorder (Anderson transition) or electron-electron interactions (Mott-Hubbard transition). Both effects play a role in heavily doped semiconductors which have become prototype systems for the study of MI transitions. In this review we focus on phosphorus-doped Si. The statistical distribution of donor atoms on an atomic scale as the origin of random disorder can be checked by scanning tunneling microscopy. Long-range Coulomb interactions lead to Altshuler-Aronov corrections to the density of states N(E F) at the Fermi level and the electrical conductivity σ(T) on the metallic side of the MI transition, and to a soft Coulomb gap at E F and Efros-Shklovskii variable-range hopping on the insulating side. On-site Coulomb interactions, on the other hand, lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side. The MI transition in Si:P can be tuned by varying the P concentration or—for barely insulating samples—by application of uniaxial stress S. The continuous stress tuning allows the observation of dynamic scaling of σ(T, S) and hence a reliable determination of the critical exponent μ of the extrapolated zero-temperature conductivity σ(0)∼|S—S c |μ, i.e.μ=1, and of the dynamical exponent z=3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. L. Sondhi, S. M. Girvin, J. P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997).

    Article  ADS  Google Scholar 

  2. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  3. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).

    Article  ADS  Google Scholar 

  4. R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982).

    Article  ADS  Google Scholar 

  5. Y. Ootuka and N. Matsunaga, J. Phys. Soc. Jpn. 59, 1801 (1990).

    Article  ADS  Google Scholar 

  6. H. G. Schlager and H. v. Löhneysen, Europhys. Lett. 40, 661 (1997).

    Article  ADS  Google Scholar 

  7. H. v. Löhneysen, in: Festkörperprobleme/Adv. in Solid State Phys. 30, 95 (1990).

    Google Scholar 

  8. S. V. Kravchenko, D. Simonian, M. P. Sarachik, Phys. Rev. Lett. 77, 4938 (1996).

    Article  ADS  Google Scholar 

  9. T. Trappmann, C. Sürgers, H. v. Löhneysen, Europhys. Lett. 38, 177 (1997).

    Article  ADS  Google Scholar 

  10. T. Trappmann, C. Sürgers, H. v. Löhneysen, Appl. Phys. A 68, 167 (1999).

    Article  ADS  Google Scholar 

  11. M. Schöck, C. Sürgers, H. v. Löhneysen, Phys. Rev. B 61, 7622 (2000).

    Article  ADS  Google Scholar 

  12. M. C. M. M. van der Wieden, A. J. A. van Roij, H. van Kampen, Phys. Rev. Lett. 76, 1075 (1996).

    Article  ADS  Google Scholar 

  13. C. Wittneven, R. Dombrowski, M. Morgenstern, R. Wiesendanger, Phys. Rev. Lett. 81, 5616 (1998).

    Article  ADS  Google Scholar 

  14. A. Roy and M. P. Sarachik, Phys. Rev. B 37, 5531 (1988).

    Article  ADS  Google Scholar 

  15. M. A. Paalanen, S. Sachdev, A. E. Ruckenstein, Phys. Rev. Lett. 57, 2061 (1986).

    Article  ADS  Google Scholar 

  16. H. Alloul and P. Dellouve, Phys. Rev. Lett. 59, 578 (1978).

    Article  ADS  Google Scholar 

  17. J. R. Marko, J. P. Harison, J. D. Quirt, Phys. Rev. B 10, 2448 (1974).

    Article  ADS  Google Scholar 

  18. N. Kobayashi, S. Ikehata, S. Kobayashi, W. Sasaki, Solid State Commun. 24, 67 (1977).

    Article  ADS  Google Scholar 

  19. M. Lakner and H. v. Löhneysen, Phys. Rev. Lett. 83, 648 (1989).

    Article  ADS  Google Scholar 

  20. M. Lakner, H. v. Löhneysen, A. Langenfeld, P. Wölfle, Phys. Rev. B 50, 17064 (1994).

    Article  ADS  Google Scholar 

  21. S. Wagner, M. Lakner, H. v. Löhneysen, Phys. Rev. B 55, 4219 (1997).

    Article  ADS  Google Scholar 

  22. M. Milovanović, S. Sachdev, R. N. Bhatt, Phys. Rev. Lett. 63, 82 (1989).

    Article  ADS  Google Scholar 

  23. R. N. Bhatt and D. S. Fisher, Phys. Rev. Lett. 68, 3072 (1992).

    Article  ADS  Google Scholar 

  24. V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 71, 3218 (1993).

    Article  ADS  Google Scholar 

  25. A. Langenfeld and P. Wölfle, Ann. Phys. (Leipzig) 4, 43 (1995).

    ADS  Google Scholar 

  26. T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, W. Lin, Phys. Rev. B 27, 7509 (1983).

    Article  ADS  Google Scholar 

  27. M. P. Sarachik, in: Metal-insulator transitions revisited, ed. by P. P. Edwards and C. N. R. Rao, 1995, p. 79.

    Google Scholar 

  28. H. v. Löhneysen and M. Welsch, Phys. Rev. B 44, 9045 (1991).

    Article  ADS  Google Scholar 

  29. A. Blaschette, A. Ruzzu, S. Wagner, H. v. Löhneysen, Europhys. Lett. 36, 527 (1996).

    Article  ADS  Google Scholar 

  30. M. Lakner and H. v. Löhneysen, Phys. Rev. Lett. 70, 3475 (1993).

    Article  ADS  Google Scholar 

  31. P. Ziegler, M. Lakner, H. v. Löhneysen, Europhys. Lett. 33, 285 (1996).

    Article  ADS  Google Scholar 

  32. K. Maki, Prog. Theor. Phys. 41, 586 (1969).

    Article  ADS  Google Scholar 

  33. A. Gaymann, H. P. Geserich, H. v. Löhneysen, Phys. Rev. Lett. 71, 3681 (1993).

    Article  ADS  Google Scholar 

  34. A. Gaymann, H. P. Geserich, H. v. Löhneysen, Phys. Rev. B 52, 16486 (1995).

    Article  ADS  Google Scholar 

  35. N. F. Mott, Metal-insulator transitions, London: Taylor & Francis (1990).

    Google Scholar 

  36. X. Liu, A. Sidorenko, S. Wagner, P. Ziegler, H. v. Löhneysen, Phys. Rev. Lett. 77, 3395 (1996).

    Article  ADS  Google Scholar 

  37. N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, 2nd edn. Oxford: Clarendon (1979).

    Google Scholar 

  38. P. Norton, Phys. Rev. Lett. 37, 164 (1976).

    Article  ADS  Google Scholar 

  39. G. A. Thomas, M. Capizzi, F. DeRosa, R. N. Bhatt, T. M. Rice, Phys. Rev. B 23, 5472 (1981).

    Article  ADS  Google Scholar 

  40. G. Kotliar, A. Georges, W. Krauth, M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  41. Th. Maier, M. Jarell, Th. Pruschke, J. Keller, Eur. Phys. J. B 13, 613 (2000).

    Article  ADS  Google Scholar 

  42. E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  43. A. Möbius, C. Frenzel, R. Thielsch, R. Rosenbaum, C. J. Adkins, M. Schreiber, H.-D. Bauer, R. Grötzschel, V. Hoffmann, T. Krieg, N. Matz, H. Vinzelberg, M. Witcomb, Phys. Rev B 60, 14209 (1999).

    Article  ADS  Google Scholar 

  44. D. Vollhardt and P. Wölfle, in: Electronic phase transitions, ed. by W. Hanke and Yu. V. Kopaev, Elsevier B.V. (1992), p. 1.

    Google Scholar 

  45. D. A. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  46. B. Kramer, K. Broderix, A. MacKinnon, M. Schreiber, Physica A 167 163 (1990).

    Article  ADS  Google Scholar 

  47. B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).

    Article  ADS  Google Scholar 

  48. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).

    Article  ADS  Google Scholar 

  49. G. A. Thomas, Phil. Mag. B 52, 479 (1985).

    Article  Google Scholar 

  50. G. A. Thomas, M. A. Paalanen, T. F. Rosenbaum, Phys. Rev. B 27, 3897 (1983).

    Article  ADS  Google Scholar 

  51. M. A. Paalanen, T. F. Rosenbaum, G. A. Thomas, R. N. Bhatt, Phys. Rev. Lett. 48, 1284 (1982).

    Article  ADS  Google Scholar 

  52. H. Stupp, M. Hornung, M. Lakner, O. Madel, H. v. Löhneysen, Phys. Rev. Lett. 71, 2634 (1993).

    Article  ADS  Google Scholar 

  53. S. Waffenschmidt, C. Pfleiderer, H. v. Löhneysen, Phys. Rev. Lett. 83, 3005 (1999).

    Article  ADS  Google Scholar 

  54. R. N. Bhatt, Phys. Rev. B 26, 1082 (1982).

    Article  ADS  Google Scholar 

  55. S. Bogdanovich, M. P. Sarachik, R. N. Bhatt, Phys. Rev. Lett. 82, 137 (1999).

    Article  ADS  Google Scholar 

  56. H. Stupp, M. Hornung, M. Lakner, O. Madel, H. v. Löhneysen, Phys. Rev. Lett. 72, 2122 (1994).

    Article  ADS  Google Scholar 

  57. M. Hornung, M. Iqbal, S. Waffenschmidt, H. v. Löhneysen, phys. stat. sol. (b) 218, 75 (2000).

    Article  ADS  Google Scholar 

  58. P. Dai, Y. Zhang, M. P. Sarachik, Phys. Rev. Lett. 66, 1914 (1991).

    Article  ADS  Google Scholar 

  59. H. v. Löhneysen, J. Magn. Magn. Mat. 200, 532 (1999).

    Article  ADS  Google Scholar 

  60. H. L. Lee, J. P. Carini, D. V. Baxter, G. Grüner, Phys. Rev. Lett. 80, 4261 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

v. Löhneysen, H. (2000). Disorder, electron-electron interactions and the metal-insulator transition in heavily doped Si:P. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108351

Download citation

  • DOI: https://doi.org/10.1007/BFb0108351

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics