Skip to main content

Beyond the tunneling model—Elastic properties of vitreous silica at low temperatures

  • Interactions
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

The internal friction Q −1 and the sound velocity δv/v of vitreous silica were measured at temperatures between 6 mK and 40 K using mechanical double paddle resonators. This experimental technique allows measurements to be performed at different frequencies (0.33 to 14 kHz) and with very small background loss. Above ∼ 50 mK the elastic properties can be described by the tunneling model with overall good agreement, provided that at temperatures above 5 K allowance is made for thermally activated relaxation processes. In contrast, at very low temperatures both internal friction and sound velocity deviate substantially from the predictions of the tunneling model. The results clearly indicate the relevance of mutual interaction between tunneling states in the Millikelvin temperature range but a satisfactory quantitative understanding of the observed phenomena is still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. W.A. Phillips (ed.) Amorphous Solids—Low Temperature Properties (Springer, Berlin, 1981).

    Google Scholar 

  2. P. Esquinazi (ed.) Tunneling Systems in Amorphous and Crystalline Solids (Springer, Berlin, 1998).

    Google Scholar 

  3. W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972); P.W. Anderson, B.I. Halperin, C.M. Varma, Phil. Mag. 25, 1 (1972).

    Article  ADS  Google Scholar 

  4. A.K. Raychaudhuri, S. Hunklinger, Z. Phys. B 57, 113 (1984).

    Article  ADS  Google Scholar 

  5. J. Classen, C. Enss, C. Bechinger, G. Weiss, S. Hunklinger, Ann. Phys. (Leipzig) 3, 315 (1994).

    ADS  Google Scholar 

  6. P. Esquinazi, R. König, F. Pobell, Z. Phys. B 87, 305 (1992).

    Article  ADS  Google Scholar 

  7. B.E. White, Jr., R.O. Pohl, Phys. Rev. Lett. 75, 4437 (1995).

    Article  ADS  Google Scholar 

  8. T. Burkert, J. Classen, C. Enss, S. Hunklinger, Contribution to the XXII. Int. Conf. on Low Temp. Phys. (LT22, August 99, Helsinki), to appear in Physica B.

    Google Scholar 

  9. J. Classen, T. Burkert, C. Enss, S. Hunklinger, Phys. Rev. Lett. 84, 2176 (2000).

    Article  ADS  Google Scholar 

  10. J. Jäckle, L. Piché, W. Arnold, S. Hunklinger, J. Non-Cryst. Solids 20, 365 (1976).

    Article  Google Scholar 

  11. D. Tielbürger, R. Merz, R. Ehrenfels, S. Hunklinger, Phys. Rev. B 45, 2750 (1992).

    Article  ADS  Google Scholar 

  12. W. Arnold, S. Hunklinger, Solid State Commun. 17, 833 (1975).

    Article  Google Scholar 

  13. J.E. Grabner, B. Golding, Phys. Rev. B 19, 964 (1979).

    Article  ADS  Google Scholar 

  14. C. Enss, S. Ludwig, R. Weis, S. Hunklinger, Czech. J. Phys. 46, 2247 (1996).

    Article  ADS  Google Scholar 

  15. S. Rogge, D. Natelson, D.D. Osheroff, Phys. Rev. Lett. 76, 3136 (1996), D. Natelson, D. Rosenberg, D.D. Osheroff, ibid. Phys. Rev. Lett. 80, 4689 (1998).

    Article  ADS  Google Scholar 

  16. C. Enss, S. Hunklinger, Phys. Rev. Lett. 79, 2831 (1997).

    Article  ADS  Google Scholar 

  17. P. Strehlow, C. Enss, S. Hunklinger, Phys. Rev. Lett. 80, 5361 (1998).

    Article  ADS  Google Scholar 

  18. P. Strehlow et al., Phys. Rev. Lett. 84, 1938 (2000).

    Article  ADS  Google Scholar 

  19. J. Jäckle, Z. Phys. B 257, 212 (1972).

    Article  Google Scholar 

  20. P. Doussineau, C. Frénois, R.G. Leisure, A. Levelut, J.-Y. Prieur, J. Phys. (Paris) 41, 1193 (1980).

    Google Scholar 

  21. P. Neu, A. Würger, Z. Phys. B 95, 385 (1994).

    Article  ADS  Google Scholar 

  22. S. Rau, C. Enss, S. Hunklinger, P. Neu, A. Würger, Phys. Rev. B 52, 7179 (1995).

    Article  ADS  Google Scholar 

  23. P. Neu, A. Heuer, J. Chem. Phys. 106, 1749 (1997).

    Article  ADS  Google Scholar 

  24. V.G. Karpov, M.I. Klinger, F.N. Ignatev, Zh. Eksp. Teor. Fiz. 84, 760 (1983) [Sov. Phys. JETP 57, 439 (1983)]; Y.M. Galperin, V.G. Karpov, V.I. Kozub, Adv. Phys. 38, 669 (1989); U. Buchenau, Yu.M. Galperin, V.L. Gurevich, D.A. Parshin, M.A. Ramos, H.R. Schober, Phys. Rev. B 46, 2798 (1992); D.A. Parshin, Phys. Rev. B 49, 9400 (1994).

    Google Scholar 

  25. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987); C.C. Yu, A.J. Leggett, Comments in Cond. Mat. Phys. 14, 231 (1988); K. Kassner, R.J. Silbey, J. Phys. Cond. Matter 1, 4599 (1989).

    Article  ADS  Google Scholar 

  26. S. Kettemann, P. Fulde, P. Strehlow, Phys. Rev. Lett. 83, 4325 (1999).

    Article  ADS  Google Scholar 

  27. A.L. Burin, Yu. Kagan, Physica B 194–196, 393 (1994).

    Article  Google Scholar 

  28. A.L. Burin, J. Low Temp. Phys. 100, 309 (1995).

    Article  ADS  Google Scholar 

  29. Suprasil 300, manufactured by Heraeus Hanau, Germany. Except for Cl impurities it is a chemically extremely pure glass, similar to Suprasil W used in previous experiments [5]..

    ADS  Google Scholar 

  30. J. Stockburger, M. Grifoni, M. Sasseti, U. Weiss, Z. Phys. B 94, 447 (1994).

    Article  ADS  Google Scholar 

  31. J.E. Van Cleve, Ph.D. thesis, Cornell University, 1991 (unpublished).

    Google Scholar 

  32. E. Thompson, G. Lawes, J.M. Parpia, R.O. Pohl, Contribution to the XXII. Int. Conf. on Low Temp. Phys. (LT22, August 99, Helsinki), to appear in Physica B; E. Thompson, G. Lawes, J.M. Parpia, R.O. Pohl, to appear in Phys. Rev. Lett.

    Google Scholar 

  33. In Ref. [9] a similar graph was shown. Erroneously, in three of the curves (1.03, 2.52, and 5.03 kHz) a value of A=1×108 K−3s−1 rather than A=8×107 K−3s−1 was used. However, the qualitative picture is not significantly changed by this error.

    Article  ADS  Google Scholar 

  34. S. Rogge, D. Natelson, B. Tigner, D.D. Osheroff, Phys. Rev. B 55, 11256 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Additional information

This paper is dedicated to Prof. F. Wegner on occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Classen, J., Burkert, T., Enss, C., Hunklinger, S. (2000). Beyond the tunneling model—Elastic properties of vitreous silica at low temperatures. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108360

Download citation

  • DOI: https://doi.org/10.1007/BFb0108360

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics