Skip to main content

Aggregation in sulfate latex suspensions: The role of charge for stability predictions

  • New In Colloid Science
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XII

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 110))

Abstract

It is commonly reported that the classical aggregation theory by Derjaguin, Landau, Verwey and Overbeek (DLVO) fails to predict quantitatively the dependence of colloid stability on the electrolyte concentration of the solution and on the particle size. A connection of such problems to the typical surface charge density of model particles was indicated by a recent study of pH-dependent aggregation. The present investigation compares the mobility and aggregation behavior of differently charged sulfate latex particles, measured by electrophoresis and dynamic light scattering. We find a much closer agreement of observed and predicted stability for particles of very low surface charge. A new picture of the limitations of DLVO-theory follows from the analysis of theoretical energy profiles when combined with results from direct force measurements, and is strongly supported by our present findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derjaguin BV, Landau L (1941) Acta Physicochim USSR 14:633–662; Verwey EJW, Overbeek JThG (1948) Theory of the Stability of Lyophobic Colloids Elsevier, New York

    Google Scholar 

  2. Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions. Cambridge Univ Press, New York

    Google Scholar 

  3. Lips A, Willis E (1973) Trans Farad Soc 69:1226–1236; Zeichner GR, Schowalter WR (1979) J Colloid Interface Sci 71:237–253; Elimelech M, Gregory J, Jia X, Williams R (1995) Particle Deposition & Aggregation. Butterworth-Heinemann, Oxford

    Article  CAS  Google Scholar 

  4. Kihira H, Ryde N, Matijevic E (1992) Chem Soc Faraday Trans 88:2379–2386

    Article  CAS  Google Scholar 

  5. Reerink H, Overbeek JThG (1954) Discuss Faraday Soc 18:74–84; Overbeek JThG (1982) Adv Colloid Interface Sci 16:17–30; Tsuruta LR, Lessa MM, Carmona-Ribeiro AM (1995) J Colloid Interface Sci 175:470–475

    Article  CAS  Google Scholar 

  6. Swanton SW (1995) Adv Colloid Interface Sci 54:129–208

    Article  CAS  Google Scholar 

  7. Shulepov SYu, Dukhin SS, Lyklema J (1995) J Colloid Interface Sci 171:340–350; Shulepov SYu (1997) J Colloid Interface Sci 189:199–207

    Article  CAS  Google Scholar 

  8. Einarson MB, Berg JC (1992) J Colloid Interface Sci 155:165–172; Israelachvili J, Wennerström H (1996) Nature 379:219–225

    Article  Google Scholar 

  9. Shulepov SYu, Frens G (1996) J Colloid Interface Sci 182:388–394

    Article  CAS  Google Scholar 

  10. Kjellander R, Akesson T, Jönsson B, Marčelja S (1992) J Chem Phys 97:1424–1431

    Article  CAS  Google Scholar 

  11. Israelachvili JN, Pashley RM (1983) Nature 306:249–250; Horn RG, Clarke DR, Clarkson MT (1988) J Mater Res 3:413–416

    Article  CAS  Google Scholar 

  12. Behrens SH, Borkovec M, Schurtenberger P (1998) Langmuir 14:1951–1954

    Article  CAS  Google Scholar 

  13. Gisler T, Borkovec M (1993) Langmuir 9:2247–2249

    Article  CAS  Google Scholar 

  14. O'Brien RW, White LR (1978) J Chem Soc Faraday Trans II 77:1607–1626

    Article  Google Scholar 

  15. Honig EP, Roebersen GJ, Wiersema PH (1971) J Colloid Interface Sci 36:97–109

    Article  CAS  Google Scholar 

  16. Bowen WR, Jenner F (1995) Adv Colloid Interface Sci 56:201–243

    Article  CAS  Google Scholar 

  17. Ninham BW, Parseggian VA (1971) J Theor Biol 31:405–428

    Article  CAS  Google Scholar 

  18. Carnie SL, Chan DYC, Stankovich J (1994) J Colloid Interface Sci 165:116–128

    Article  CAS  Google Scholar 

  19. Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H (1996) Langmuir 12:5541–5549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. J. M. Koper D. Bedeaux C. Cavaco W. F. C. Sager

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Behrens, S.H., Borkovec, M., Semmler, M. (1998). Aggregation in sulfate latex suspensions: The role of charge for stability predictions. In: Koper, G.J.M., Bedeaux, D., Cavaco, C., Sager, W.F.C. (eds) Trends in Colloid and Interface Science XII. Progress in Colloid & Polymer Science, vol 110. Steinkopff. https://doi.org/10.1007/BFb0118051

Download citation

  • DOI: https://doi.org/10.1007/BFb0118051

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1117-0

  • Online ISBN: 978-3-7985-1653-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics