Skip to main content

On regularity conditions in mathematical programming

  • Chapter
  • First Online:
Optimality and Stability in Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 19))

Abstract

Constraint qualifications are revisited, once again. These conditions are shown to be reminiscent of transversality theory. They are used as a useful tool for computing tangent cones, by the means of generalized inverse function theorems. The finite dimensional case is given a special treatment as the results are nicer and simpler in this case. Some remarks on the nondifferentiable case are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Abadie, Problèmes d’optimisation (Institut Blaise Pascal Paris, 1965).

    Google Scholar 

  2. J.M. Abadie, “On the Kuhn-Tucker theorem”, in: J. Abadie, ed., Nonlinear programming (North Holland, Amsterdam, 1967) pp. 19–36.

    Google Scholar 

  3. R. Abraham and J. Robbins, Transversal mappings and flows (Benjamin, New York, 1967).

    MATH  Google Scholar 

  4. C.C. Agunwamba, “Optimality condition: Constraint regularization”, Mathematical Programming 13 (1977) 38–48.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Alt, “Stabilität mengenwertiger Abbildungen mit Anwendungen auf nichtlineare Optimierungsprobleme”, Bayreuther Mathematische Schriften 3 (1979) 1–107.

    Google Scholar 

  6. K.J. Arrow, L. Hurwicz and H. Uzawa, “Constraint qualifications in maximization problems”, Naval Research Logistics Quarterly 8 (1961) 175–191.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-P. Aubin, “La théorie des sous-gradients généralisés”, Annales des Sciences Mathématiques du Québec 2 (1978) 197–252.

    MATH  MathSciNet  Google Scholar 

  8. J.-P. Aubin and F.H. Clarke, “Multiplicateurs de Lagrange en optimisation non convexe et applications”, Comptes Rendus de l’Académie des Sciences A 285 (1977) 451–454.

    MATH  MathSciNet  Google Scholar 

  9. P.J. Bender, “An application of Guignard’s generalized Kuhn-Tucker conditions”, Journal of Optimization Theory and Applications 25 (1978) 585–589.

    Article  MATH  MathSciNet  Google Scholar 

  10. V.G. Boltyanski, “The method of tents in the theory of extremal problems”, Russian Mathematical Surveys 30 (1975) 1–54.

    Article  Google Scholar 

  11. J. Borwein, “Weak tangent cones and optimization in a Banach space”, SIAM Journal on Control and Optimization 16 (1978) 512–522.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Canon, C. Cullum and E. Polak, “Constrained minimization problems in finite dimensional spaces”, SIAM Journal on Control and Optimization 4 (1966) 528–547.

    Article  MATH  MathSciNet  Google Scholar 

  13. F.H. Clarke, “Generalized gradients and applications”, Transactions of the American Mathematical Society 205 (1975) 247–262.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Cornet, “A remark on tangent cones”, Working paper University of Paris IX (July, 1979).

    Google Scholar 

  15. A.Y. Dubovitskii and A.A. Milyutin, “Extremum problems with constraints”, Doklady Akademii Nauk SSSR 149 (1963) 759–762.

    Google Scholar 

  16. Pham Canh Duong and Hoang Tuy, “Stability, surjectivity, and local invertibility of non differentiable mappings”, Acta Mathematica Vietnamica 3 (1978) 89–105.

    MATH  MathSciNet  Google Scholar 

  17. I. Ekeland, “Nonconvex optimization problems”, Bulletin of the American Mathematical Society 1(1979) 443–474.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Gautier and J.P. Penot, “Fermés invariants par un système dynamique”, Comptes Rendus de l’Académie des Sciences A 276 (1973) 1457–1460.

    MATH  MathSciNet  Google Scholar 

  19. J. Gauvin, “A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming”, Mathematical Programming 12 (1977) 136–138.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Gauvin and J. W. Tolle, “Differential stability in nonlinear programming”, SIAM Journal on Control and Optimization 15 (1977) 294–311.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Golubitsky, V. Guillemin, Stable mappings and their singularities (Springer, Berlin, 1973).

    MATH  Google Scholar 

  22. F.J. Gould and J. Tolle, “A necessary and sufficient qualification for constrained optimization”, SIAM Journal on Applied Mathematics 20 (1971) 164–172.

    Article  MATH  MathSciNet  Google Scholar 

  23. F.J. Gould and J. Tolle, “Geometry of optimality conditions and constraint qualifications”, Mathematical Programming 2 (1972) 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Guignard, “Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space”, SIAM Journal on Control 7 (1969) 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Gwinner, “Contribution à la programmation non différentiable dans les espaces vectoriels topologiques”, Comptes Rendus de l’Académie des Sciences A 289 (1979) 523–526.

    MATH  MathSciNet  Google Scholar 

  26. H. Halkin, “A satisfactory treatment of equality and operator constraints in the Dubovitskii-Milyutin optimization formalism”, Journal of Optimization Theory and Applications 6 (1970) 138–149.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data”, SIAM Journal on Control and Optimization 12 (1974) 229–236.

    Article  MATH  MathSciNet  Google Scholar 

  28. M.R. Hestenes, Optimization theory: The finite dimensional case (Wiley, New York, 1975).

    MATH  Google Scholar 

  29. J.B. Hiriart-Urruty, “New concepts in nondifferentiable programming”, Bulletin Société Mathématique de France Mémoire 60 (1979) 57–85.

    MathSciNet  Google Scholar 

  30. J.B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”, Mathematics of Operations Research 4 (1979) 79–97.

    Article  MATH  MathSciNet  Google Scholar 

  31. M.W. Hirsch, Differential topology (Springer, Berlin, 1976).

    MATH  Google Scholar 

  32. R. Holmes, Geometric functional analysis and its applications (Springer, Berlin, 1975).

    MATH  Google Scholar 

  33. H.W. Kuhn and A.W. Tucker, “Nonlinear programming”, in: J. Neyman, ed., Proceedings of the second Berkeley symposium on mathematical statistics and probability (University of California Press, Berkeley 1951) pp. 481–492.

    Google Scholar 

  34. S. Kurcyusz, “On the existence and non existence of Lagrange multipliers in Banach spaces”, Journal of Optimization Theory and Applications 20 (1976) 81–110.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Lang, Introduction to differentiable manifolds (Interscience, New York, 1962).

    MATH  Google Scholar 

  36. I. Lasiecka, “Generalization of the Dubovitskii-Milyutin optimality conditions”, Journal of Optimization Theory and Applications 24 (1978) 421–436.

    Article  MATH  MathSciNet  Google Scholar 

  37. O.L. Mangasarian, S. Fromowitz, “The Fritz-John necessary optimality conditions in the presence of equality and inequality constraints”, Journal of Mathematical Analysis and Applications 17 (1967) 37–47.

    Article  MATH  MathSciNet  Google Scholar 

  38. R.H. Martin, Jr., Nonlinear operators and differential equations in Banach spaces (Wiley-Interscience, New York, 1976).

    MATH  Google Scholar 

  39. D.H. Martin, R.J. Gardner and G.G. Watkins, “Indicating cones and the intersection principle for tangential approximants in abstract multipliers rules”, Journal of Optimization Theory and Applications 33 (1981) 515–537.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Maurer and J. Zowe, “First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems”, Mathematical Programming 16 (1979) 98–110.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Michel, “Problème des inégalités. Applications à la programmation et au contrôle optimal”, Bulletin Société Mathématique de France 101 (1973) 413–439.

    MATH  Google Scholar 

  42. S.B. Nadler, Jr. “Multivalued contraction mappings” Pacific Journal of Mathematics 30 (1969) 475–488.

    MATH  MathSciNet  Google Scholar 

  43. L.W. Neustadt, Optimization (Princeton University Press, Princeton, NJ, 1976).

    MATH  Google Scholar 

  44. J.W. Nieuwenhuis, “Another application of Guignard’s generalized Kuhn-Tucker conditions”, Journal of Optimization Theory and Applications 30 (1980) 117–125.

    Article  MATH  MathSciNet  Google Scholar 

  45. J.W. Nieuwenhuis, “About a local approximation theorem and an inverse function theorem”, Journal of the Australian Mathematical Society 22 (B) (1980) 185–192.

    MATH  MathSciNet  Google Scholar 

  46. J-P. Penot, “Sous-différentiel de fonctions numériques non convexes”, Comptes Rendus de l’Académie des Sciences 278 A (1974) 1553–1555.

    MathSciNet  Google Scholar 

  47. J.-P. Penot, “Calcul sous-différentiel et optimisation”, Journal Functional Analysis 27 (1978) 248–287.

    Article  MATH  MathSciNet  Google Scholar 

  48. J.-P. Penot, “The use of generalized subdifferential calculus in optimization theory”, Third Symposium on Optimization Research, Mannheim (1978); Methods of Operations Research 31 (Verlags gruppe Athenäum, Hain, Scriptor, Hanstein, Berlin, 1979) pp. 495–511.

    Google Scholar 

  49. J.-P. Penot, “Fixed point theorems without convexity”, Bulletin Société Mathématique de France Mémoire 60 (1979) 129–152.

    Google Scholar 

  50. J.-P. Penot, “On the existence of Lagrange multipliers in nonlinear programming in Banach spaces in Optimization and Optimal Control, Lecture Notes in Control and Information Sciences 30 (Springer, Berlin, 1981) pp. 89–104.

    Google Scholar 

  51. J.-P. Penot, “Inversion à droite d’applications non linéaires. Applications”, Comptes Rendus de l’Académie des Sciences A 290 (1980) 997–1000.

    MathSciNet  Google Scholar 

  52. J.-P. Penot, “A characterization of tangential regularity”, Nonlinear Analysis, Theory, Methods and Applications 5 (1981) 625–653.

    Article  MATH  MathSciNet  Google Scholar 

  53. J.-C. Pomerol, “Contributions à la programmation mathématique: Existence de multiplicateurs de Lagrange et stabilité”, Thèse Université Paris VI (1980).

    Google Scholar 

  54. B.N. Pshenichnyi, Necessary conditions for an extremum (Dekker, New York, 1971).

    Google Scholar 

  55. B.N. Pshenichnyi, “Necessary conditions of the extremum for non smooth functions”, Kibernetika 6 (1977) 92–95 [English translation: Cybernetics 13 (1977) 886–891].

    Google Scholar 

  56. C. Raffin, “Sur les programmes convexes définis dans des espaces vectoriels topologiques”, Annales Institut Fourier (1970) 457–491.

    Google Scholar 

  57. S.M. Robinson, “An inverse function theorem for a class of multivalued functions”, Proceedings of the American Mathematical Society 41 (1973) 211–218.

    Article  MATH  MathSciNet  Google Scholar 

  58. S.M. Robinson, “Stability theory for systems of inequalities, part II: Differentiable nonlinear systems”, Journal Numerical Analysis 13 (1976) 497–513.

    Article  MATH  Google Scholar 

  59. S.M. Robinson, “Regularity and stability for convex multivalued functions”, Mathematics of Operations Research 1 (1976) 130–143.

    Article  MATH  MathSciNet  Google Scholar 

  60. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  61. R.T. Rockafellar, “Directionally lipschitzian functions and subdifferential calculus”, Proceedings of the London Mathematical Society 39 (1979) 331–355.

    Article  MATH  MathSciNet  Google Scholar 

  62. J.E. Spingarn, “Generic conditions for optimality in constrained minimization problems”, Ph.D. Thesis, University of Washington, Seattle, WA (1977).

    Google Scholar 

  63. L. Thibault, “Sur les fonctions compactement lipschitziennes et leurs applications: programmation mathématique, contrôle optimal, espérance conditionnelle”, Thèse Université de Montpellier (1980).

    Google Scholar 

  64. C. Ursescu, “Multifunctions with convex closed graph”, Czechoslovak Mathematical Journal 25 (1975) 438–441.

    MathSciNet  Google Scholar 

  65. P.P. Varaiya, “Nonlinear programming in Banach space”, SIAM Journal on Applied Mathematics 15 (1967) 284–293.

    Article  MATH  MathSciNet  Google Scholar 

  66. A. Wierzbicki, “Maximum principle for semi-convex performance functionals”, Siam Journal on Control and Optimization 10 (1972) 444–459.

    Article  MATH  MathSciNet  Google Scholar 

  67. S. Zlobec, “Asymptotic Kuhn-Tucker conditions for mathematical programming problems in a Banach space”, SIAM Journal on Control 8 (1970) 505–512.

    Article  MATH  MathSciNet  Google Scholar 

  68. S. Zlobec, “Extensions of asymptotic Kuhn-Tucker conditions in mathematical programming”, SIAM Journal on Applied Mathematics 21 (1971) 448–460.

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Zlobec, “A class of optimality conditions for mathematical programming problems in Banach spaces”, Glasnik Mathematicki 7 (1972) 127–137.

    MathSciNet  Google Scholar 

  70. J. Zowe, “A remark on a regularity assumption in mathematical programming”, Journal of Optimization Theory and Applications 25 (1978) 375–382.

    Article  MATH  MathSciNet  Google Scholar 

  71. J. Zowe and S. Kurcyusz, “Regularity and stability for the mathematical programming problems in Banach spaces”, Applied Mathematics and Optimization 5 (1979) 49–62.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Monique Guignard

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Penot, JP. (1982). On regularity conditions in mathematical programming. In: Guignard, M. (eds) Optimality and Stability in Mathematical Programming. Mathematical Programming Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120988

Download citation

  • DOI: https://doi.org/10.1007/BFb0120988

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00849-8

  • Online ISBN: 978-3-642-00850-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics