Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

Valence d-orbital energies of the first row transition metals are close to the frontier π-orbital energies of o-benzoquinones. Complexes prepared with quinone ligands most commonly have the quinone coordinated with the metal in the form of a semiquinonate (SQ) radical-anion or as a catecholate (Cat) dianion. In a few unique complexes it has been possible to observe intramolecular electron transfer between localized metal and quinone electronic levels. Electron transfer is accompanied by changes in magnetism and spectral properties that have made it possible to observe metal-ligand electron transfer under equilibrium conditions in solution and in the solid state. This effect has been considered as an example of valence tautomerism (VT). In this review we present the results of studies on the physical properties of complexes that undergo VT, with a view of the scope of VT for complexes containing a variety of quinone ligands and with different metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierpont CG, Buchanan RM (1981) Coord Chem Rev 38:45

    Google Scholar 

  2. Pierpont CG, Lange CW (1994) Prog Inorg Chem 41:331

    Google Scholar 

  3. Pierpont CG (2001) Coord Chem Rev 216/217:99

    Google Scholar 

  4. Pierpont CG (2001) Coord Chem Rev 219/221:415

    Google Scholar 

  5. Gütlich P, Dei A (1997) Angew Chem Int Ed Engl 37:2734

    Google Scholar 

  6. Pierpont CG, Attia AS (2001) Collect Czech Chem Commun 66:33

    Google Scholar 

  7. Buchanan RM, Pierpont CG (1980) J Am Chem Soc 102:4951

    Google Scholar 

  8. Shultz DA (2001) Valence tautomerism in dioxolene complexes of cobalt. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials II. Wiley-VCH, New York

    Google Scholar 

  9. Buchanan RM, Pierpont CG (1979) Inorg Chem 18:3439

    Google Scholar 

  10. Lynch MW, Buchanan RM, Pierpont CG, Hendrickson DN (1981) Inorg Chem 20:1038

    Google Scholar 

  11. Lynch MW, Hendrickson DN, Fitzgerald BJ, Pierpont CG (1981) J Am Chem Soc 103:3961

    Google Scholar 

  12. Adams DM, Hendrickson DN (1996) J Am Chem Soc 118:11,515

    Google Scholar 

  13. Hendrickson DN, Adams DM, Wu CC (1996) Magnetism: a supramolecular function. In: Kahn O (ed) Nato ASI Series. Kluwer Publishing Co., Dordrecht, The Netherlands, pp 357–382

    Google Scholar 

  14. (a) Day P (1981) Int Rev Phys Chem 1:149; (b) Creutz C (1983) Prog Inorg Chem 30:1; (c) Richardson DE, Taube H (1984) Coord Chem Rev 60:107; (d) Hendrickson DN (1991) Mixed valence systems: applications in chemistry, physics, and biology. In: Prassides K (ed) NATO ASI Series. Kluwer Publishing Co., Dordrecht, The Netherlands, pp 67–90

    Google Scholar 

  15. (a) Beattie JK (1988) Adv Inorg Chem 32:1; (b) König E (1987) Prog Inorg Chem 35:527; (c) Rao CNR (1985) Int Rev Phys Chem 4:19; (d) Gütlich P (1981) Struct Bonding (Berlin) 44:83; (e) Bacci M (1988) Coord Chem Rev 86:245; (f) Maeda Y, Takashima Y (1988) Comments Inorg Chem 7:41; (g) Toftlund H (1989) Coord Chem Rev 94:67; (h) Zarembowitch J (1992) New J Chem 16:255; (g) Kahn O (1993) Molecular magnetism. VCH Publishers, New York, pp 52–85

    Google Scholar 

  16. Kahn O, Launay JP (1988) Chemtronics 3:140; (b) Kahn O, Kröber J, Jay C (1992) Adv Mater 4:718; (c) Launay JP (1987) Molecular electronic devices II. Carter FL (ed) Marcel Dekker, New York; (d) Joachim C, Launay JP (1990) J Mol Electron 6:37; (e) Hush NS, Wong AT, Bacskay GP, Reimers JR (1990) J Am Chem Soc 112:4192; (f) Aviram A (1992) Int J Quant Chem 42:1615; (g) Lazarev PI (ed) (1991) Molecular electronics: materials and methods. Kluwer Academic Publishers, Dordrecht, The Netherlands; (f) Sienick K (ed) (1994) Molecular electronics and molecular electronic devices. CRC Press, Boca Rataon, FL

    Google Scholar 

  17. (a) Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024; (b) Gütlich P, Hauser A (1990) Coord Chem Rev 97:1

    Google Scholar 

  18. (a) Jay C, Grolière F, Kahn O, Kröber J (1993) J Mol Cryst Liq Cryst 234:255; (b) Kröber J, Codjovi E, Kahn O, Grolière F (1993) J Am Chem Soc 115:9810; (c) Kahn O, Kröber J, Jay C (1992) Adv Mater 4:718

    Google Scholar 

  19. (a) Hauser A (1993) Chem Phys Lett 202:173; (b) Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  20. (a) Adams DM, Dei A, Rheingold AL, Hendrickson DN (1993) Angew Chem Int Ed Engl 32:880; (b) Adams DM, Dei A, Rheingold AL, Hendrickson DN (1993) J Am Chem Soc 115:8221

    Google Scholar 

  21. (a) Hauser A (1995) Comments Inorg Chem 17:17; (b) Hauser A, Vef A, Adler PJ (1991) J Chem Phys 95:8710

    Google Scholar 

  22. Adams DM, Li B, Simon JD, Hendrickson DN (1995) Angew Chem Int Ed Engl 34:1481

    Google Scholar 

  23. Buhks E, Navon G, Bixon M, Jortner J (1980) J Am Chem Soc 102:2918

    Google Scholar 

  24. Adams DM, Noodleman L, Hendrickson DN (1997) Inorg Chem 36:3966

    Google Scholar 

  25. Newton MD (1991) J Phys Chem 95:30

    Google Scholar 

  26. Adams DM, Hendrickson DN. Unpublished results

    Google Scholar 

  27. Jung O-S, Pierpont CG (1994) Inorg Chem 33:2227

    Google Scholar 

  28. Jung O-S, Jo DH, Lee Y-A, Sohn YS, Pierpont CG (1998) Inorg Chem 37:5875

    Google Scholar 

  29. Attia AS, Jung O-S, Pierpont CG (1994) Inorg Chim Acta 226:91

    Google Scholar 

  30. Jung O-S, Pierpont CG (1994) J Am Chem Soc 116:2229

    Google Scholar 

  31. Jung O-S, Jo DH, Lee Y-A, Conklin BJ, Pierpont CG (1997) Inorg Chem 36:19

    Google Scholar 

  32. Caneschi A, Cornia A, Dei A (1998) Inorg Chem 37:3419

    Google Scholar 

  33. Larsen SK, Pierpont CG (1988) J Am Chem Soc 110:1827

    Google Scholar 

  34. Neuwahl FVR, Righini R, Dei A (2002) Chem Phys Lett 352:408

    Google Scholar 

  35. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704

    Google Scholar 

  36. Shimamoto N, Ohkoshi S, Sato O, Hashimoto K (2002) Inorg Chem 41:678

    Google Scholar 

  37. Escax V, Bleuzen A, Moulin CC, Villain F, Goujon A, Varret F, Verdaguer M (2001) J Am Chem Soc 123:12,536

    Google Scholar 

  38. Sato O, Einaga Y, Fujishima A, Hashimoto K (1999) Inorg Chem 38:4405

    Google Scholar 

  39. Moulin CC, Villain F, Bleuzen A, Arrio M-A, Sainctavit P, Lomenech C, Escax V, Baudelet F, Dartyge E, Gallet J-J, Verdaguer M (2000) J Am Chem Soc 122:6653

    Google Scholar 

  40. Speier G, Tisza S, Tyeklar Z, Lange CW, Pierpont CG (1994) Inorg Chem 33:2041

    Google Scholar 

  41. Dooley DM (1999) J Biol Inorg Chem 4:1

    Google Scholar 

  42. Abakumov GA, Gamov VA, Nevodchikov VI, Cherkasov VK (1989) Dokl Akad Nauk SSSR 304:107

    Google Scholar 

  43. Zakharov LN, Saf’yanov YN, Struchkov YT, Abakumov G, Cherasov VK, Garnov VA (1990) Koord Khim 16:802

    Google Scholar 

  44. Buchanan RM, Wilson-Blumenberg C, Trapp C, Larsen SK, Greene DL, Pierpont CG (1986) 25:3070

    Google Scholar 

  45. Rall J, Wanner M, Albrecht M, Homung FM, Kaim W (1999) Chem Eur J 5:2802

    Google Scholar 

  46. Speier G, Tykelar Z, Szabo L, Toth P, Pierpont CG, Hendrickson DN (1993) Evidence for substrate activation of copper catalyzed intradiol cleavage in catechols. In: Barton HD, Martel AE, Sawyer DT (eds) The activation of dioxygen and homogeneous catalytic oxidation. Plenum, New York, p 423

    Google Scholar 

  47. Speier G, Tyeklar Z, Toth P, Speier E, Tisza S, Rochenbauer A, Whalen AM, Alkire N, Pierpont CG (2001) Inorg Chem 40:5653

    Google Scholar 

  48. Magers KD, Smith CG, Sawyer DT (1980) Inorg Chem 19:492

    Google Scholar 

  49. Lynch MW, Hendrickson DN, Fitzgerald BJ, Pierpont CG (1984) J Am Chem Soc 106:2041

    Google Scholar 

  50. Attia AS, Pierpont CG (1995) Inorg Chem 34:1172

    Google Scholar 

  51. Attia AS, Pierpont CG (1997) Inorg Chem 36:6184

    Google Scholar 

  52. Attia AS, Pierpont CG (1998) Inorg Chem 37:3051

    Google Scholar 

  53. Caneschi A, Dei A (1998) Angew Chem Int Ed Engl 37:3005

    Google Scholar 

  54. Roux C, Adams DM, Itié JP, Polian A, Hendrickson DN, Verdaguer M (1996) Inorg Chem 35:2846; Caneschi A, Dei A, Fabrizi de Biani F, Gütlich P, Ksenofontov V, Levchenko G, Hoefer Renz F (2001) Chem Eur J 7:3926

    Google Scholar 

  55. Ruiz D, You J, Guzei IA, Rheingold AL, Hendrickson DN (1998) Chem Commun 2089

    Google Scholar 

  56. Ruiz-Molina D, Veciana J, Wurst K, Hendrickson DN, Rovira C (2000) Inorg Chem 39:617

    Google Scholar 

  57. Ruiz-Molina D, Wurst K, Hendrickson DN, Rovira C, Veciana J (2002) J Adv Funct Mater 12:347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Hendrickson .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hendrickson, D.N., Pierpont, C.G. Valence Tautomeric Transition Metal Complexes. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95413

Download citation

  • DOI: https://doi.org/10.1007/b95413

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics