Skip to main content

Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes

  • Chapter
Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

The interplay between the spin crossover and the structural properties of the complexes in the solid state is still under investigation. In particular the following questions may be asked. What are the structural modifications of the metal coordination sphere at the spin crossover? How are the dimensions and the symmetry of the crystallographic unit cell affected by the spin crossover? Conversely, how may structural properties influence the spin crossover behavior? Do intramolecular parameters account for the features of the spin crossover? What are the relevant characteristics of the crystal packing for the cooperativity? Do the above questions have general answers that can be used for all the spin crossover compounds? This contribution tries to give answers to these questions. The discussion is based on a large structural data set provided in the literature for the six-coordinated iron(II) mononuclear complexes of general formula [FeLn(NCS)2]. The effects of temperature, light and pressure on the X-ray diffraction crystal structures are reviewed. The structural modifications due to the spin crossover are first estimated, these include the expansion and the distortion of the FeN6 octahedron, the isotropic and the anisotropic changes of the unit cell. The influence of the structural properties on the features of the spin crossover is then discussed. For example, intramolecular properties such as Fe-N bond lengths are in general not relevant to account for the spin crossover features. In contrast, hydrogen bonds play a paramount role in the propagation of the spin conversion throughout the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

abpt:

4-Amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole

AzA:

4-(Phenylazo)aniline

BiA:

4-(Aminobiphenyl)aniline

bpy:

2,2′-Bipyridine

bpym:

2,2′-Bipyrimidine

bt:

2,2′-Bi-2-thiazoline

btz:

2,2′-Bi-4,4-dihydrothiazine

DiyA:

4-(Phenylbutadiyne)aniline

dmp:

2,9-Dimethyl-1,10-phenanthroline

dpea:

(2-Aminoethyl)bis(2-pyridylmethyl)amine

dpp:

Dipyrido[3,2-a:2′,3′-c]phenazine

dppa:

(3-Aminopropyl)bis(2-pyridyl-methyl)amine

dpq:

2,3-Bis-(2′-pyridyl)-quinoxaline

HS:

High spin

LS:

Low spin

LIESST:

Light-Induced Excited Spin-State Trapping

mtz:

Methyltetrazole

PeA:

4-(Phenylethynyl)aniline

phen:

1,10-Phenanthroline

PM:

N-(2′-Pyridylmethylene)

pic:

Picolylamine (2-aminomethyl-pyridine)

ptz:

1-Propyltetrazole

py:

Pyridine

tap:

1,4,5,8-Tetraazaphenanthrene

SCO:

Spin crossover

stpy:

4-Styrylpyridine

tap:

Bis(1,4,5,8-tetraazaphenanthrene)

TeA:

4-(Aminoterphenyl)aniline

TheA:

4-(Thienylethynyl)aniline

TIA:

N-o-Tolyl-2-imidazolaldimine

References

  1. König E (1987) Prog Inorg Chem 35:527

    Google Scholar 

  2. König E, Ritter G, Kulshreshtha SH (1985) Chem Rev 85:219

    Google Scholar 

  3. König E, Madeja K (1966) Chem Commun 3:61

    Google Scholar 

  4. König E, Watson KJ (1970) Chem Phys Lett 6:457

    Google Scholar 

  5. Gütlich P (1981) Struct Bond 44:83

    Google Scholar 

  6. Wiehl L, Spiering H, Gütlich P, Knorr K (1990) J Appl Cryst 23:151

    Google Scholar 

  7. Wiehl L, Kiel G, Köhler CP, Spiering H, Gütlich P (1986) Inorg Chem 25:1565

    Google Scholar 

  8. Létard JF, Guionneau P, Codjovi E, Lavastre O, Bravic G, Chasseau D, Kahn O (1997) J Am Chem Soc 119:10861

    Google Scholar 

  9. Létard JF, Guionneau P, Rabardel L, Howard JAK, Goeta A, Chasseau D, Kahn O (1998) Inorg Chem 37:4432

    Google Scholar 

  10. Guionneau P, Marchivie M, Bravic G, Létard JF, Chasseau D (2002) J Mater Chem 12:2546

    Google Scholar 

  11. Guionneau P, Brigouleix C, Barrans Y, Goeta A, Létard JF, Howard JAK, Gaultier J, Chasseau D (2001) C R Acad Sci Ser IIc Chim 161

    Google Scholar 

  12. Guionneau P, Létard JF, Yufit DS, Chasseau D, Bravic G, Goeta A, Howard JAK, Kahn O (1999) J Mater Chem 9:985

    Google Scholar 

  13. Daubric H, Kliava J, Guionneau P, Chasseau D, Létard JF, Kahn O (2000) J Phys Condens Matter 12:5481

    Google Scholar 

  14. Gaudry JB, Capes L, Langot P, Marcén S, Kollmannsberger M, Lavastre O, Freysz E, Létard JF, Kahn O (2000) Chem Phys Lett 324:321

    Google Scholar 

  15. Real JA, Gallois B, Granier T, Suez-Panama F, Zarembovitch J (1992) Inorg Chem 31:4972

    Google Scholar 

  16. König E, Madeja K, Watson J (1968) J Am Chem Soc 90:1146

    Google Scholar 

  17. Konno M, Mikami-Kido M (1991) Bull Chem Soc Jpn 64:339

    Google Scholar 

  18. Marchivie M, Kollmannsberger M, Guionneau P, Létard JF, Chasseau D. To be published

    Google Scholar 

  19. Létard JF, Chastanet G, Nguyen O, Marcén S, Marchivie M, Guionneau P, Chasseau D, Gütlich P (2003) Monatsh Chem 134:165

    Google Scholar 

  20. Moliner N, Muñoz C, Létard S, Létard JF, Solans X, Burriel R, Castro M, Kahn O, Real JA (1999) Inorg Chim Acta 291:279

    Google Scholar 

  21. Baker WA, Bobonich HM (1964) Inorg Chem 3:1184

    Google Scholar 

  22. Müller EW, Spiering H, Gütlich P (1982) Chem Phys Lett 93:567

    Google Scholar 

  23. Lee JJ, Sheu HS, Lee CR, Chen JM, Lee JF, Wang CC, Huang CH, Wang Y (2000) J Am Chem Soc 122:5742

    Google Scholar 

  24. Matouzenko GS, Bousseksou A, Lecocq S, van Koningsbruggen PJ, Perrin M, Kahn O, Collet A (1997) Inorg Chem 36:5869

    Google Scholar 

  25. Bradley G, McKee V, Nelson SM (1979) J Chem Soc Dalton Trans 533

    Google Scholar 

  26. König E, Ritter G, Irler W, Nelson SM (1979) Inorg Chim Acta 37:169

    Google Scholar 

  27. Müller EW, Spiering H, Gütlich P (1983) J Chem Phys 79:1439

    Google Scholar 

  28. Real JA, Muñoz MC, Andrès E, Granier T, Gallois B (1994) Inorg Chem 33:3587

    Google Scholar 

  29. Matouzenko GS, Bousseksou A, Lecocq S, van Koningsbruggen PJ, Perrin M, Kahn O, Collet A (1997) Inorg Chem 36:2975

    Google Scholar 

  30. Zhong ZJ, Tao JQ, Dum CY, Liu YJ, You XZ (1998) J Chem Soc Dalton Trans 327

    Google Scholar 

  31. Claude R, Real JA, Zarembowitch J, Kahn O, Ouahab L, Grandjean D, Boukheddaden K, Varret F, Dworkin A (1990) Inorg Chem 29:4442

    Google Scholar 

  32. Roux C, Zarembowitch J, Gallois B, Granier T, Claude R (1994) Inorg Chem 33:2273

    Google Scholar 

  33. Figg DC, Herber RH, Potenza JA (1992) Inorg Chem 31:2111

    Google Scholar 

  34. Moliner N, Muñoz C, van Koningsbruggen PJ, Real JA (1998) Inorg Chim Acta 274:1

    Google Scholar 

  35. Little BF, Long GJ (1978) Inorg Chem 17:3401

    Google Scholar 

  36. Shue CF, Lee ZC, Wei HH, Cheng MC, Wang Y (1994) Polyhedron 13:2259

    Google Scholar 

  37. Cartier C, Thuery P, Verdaguer M, Zarembowitch J, Michalowicz A (1992) J Phys C8 47:563

    Google Scholar 

  38. Decurtins S, Gütlich P, Hasselbach KM, Hauser A, Spiering H (1985) Inorg Chem 24:2174

    Google Scholar 

  39. Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  40. Decurtins S, Gütlich P, Köhler CP, Spiering H (1985) J Chem Soc Chem Commun 340

    Google Scholar 

  41. Hauser A (1984) Chem Phys Lett 105:1

    Google Scholar 

  42. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  43. Hauser A (1995) Comm Inorg Chem 17:17

    Google Scholar 

  44. Gütlich P, Jung J, Goodwin HA (1996) Spin transition in iron(II) complexes. In: Coronado et al. (eds) Molecular magnetism: from molecular assemblies to the devices. NATO Advance Study Institute Series E321, Plenum, New York, p 327

    Google Scholar 

  45. Hauser A, Jeftic J, Romstedt H, Hinek R, Spiering H (1999) Coord Chem Rev 471

    Google Scholar 

  46. Létard JF, Capes L, Chastanet G, Moliner N, Létard S, Real A, Kahn O (1999) Chem Phys Lett 313:115

    Google Scholar 

  47. Herber R, Casson LM (1986) Inorg Chem 25:847

    Google Scholar 

  48. Kusz J, Spiering H, Gütlich P (2000) J Appl Cryst 33:201

    Google Scholar 

  49. Kusz J, Spiering H, Gütlich P (2001) J Appl Cryst 34:229

    Google Scholar 

  50. Marchivie M, Guionneau P, Howard JAK, Goeta AE, Chastanet G, Létard JF, Chasseau D (2002) J Am Chem Soc 124:194

    Google Scholar 

  51. Money VA, Radosavljevic Evans I, Halcrow MA, Goeta AE, Howard JAK (2003) Chem Commun 1:158

    Google Scholar 

  52. Collison D, Garner D, McGrath C, Mosselmans JFW, Roper MD, Seddon JMW, Sinn E, Young NA (1997) J Chem Soc Dalton Trans 4371

    Google Scholar 

  53. Fischer DC, Drickamer HG (1971) J Chem Phys 54:4825

    Google Scholar 

  54. Ksenofontov V, Levchenko G, Spiering H, Gütlich P, Létard JF, Bouhedja Y, Kahn O (1998) Chem Phys Lett 294:545

    Google Scholar 

  55. Levchenko GG, Ksenofontov VK, Stupakov AV, Spiering H, Garcia Y, Gütlich P (2002) Chem Phys Lett 277:125

    Google Scholar 

  56. Roux C, Zarembowitch J, Itié JP, Polian A, Verdaguer M (1996) Inorg Chem 35:574

    Google Scholar 

  57. Granier T, Gallois B, Gaultier J, Real JA, Zarembowitch J (1993) Inorg Chem 32:5305

    Google Scholar 

  58. Gaultier J, Granier T, Gallois B, Real JA, Zarembowitch J (1991) High Press Res 7:336

    Google Scholar 

  59. Granier T, Gallois B, Suez-Panama F, Gaultier J, Real JA, Zarembowitch J (1992) Bull Soc Cat Cièn XIII:293

    Google Scholar 

  60. Gallois B, Real JA, Hauw C, Zarembowitch J (1990) Inorg Chem 29:1152

    Google Scholar 

  61. Ozarowski A, McGarvey BR, Sarkar AB, Drake JE (1988) Inorg Chem 27:628

    Google Scholar 

  62. Sotofe I, Rasmussen SE (1967) Acta Chem Scand 21:2028

    Google Scholar 

  63. Hauser A (1992) Chem Phys Lett 192:65

    Google Scholar 

  64. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925

    Google Scholar 

  65. Purcell KF (1979) J Am Chem Soc 101:5147

    Google Scholar 

  66. Musher JI (1972) Inorg Chem 11:2335

    Google Scholar 

  67. Drew MGB, Harding CJ, McKee V, Morgan CG, Nelson J (1995) J Chem Soc Chem Commun 1035

    Google Scholar 

  68. Makovicky E, Balic-Zunic T (1998) Acta Cryst B54:766

    Google Scholar 

  69. McCusker JK, Rheingold AL, Hendrickson DN (1996) Inorg Chem 35:2100

    Google Scholar 

  70. Balic Zunic T, Vickovic I (1996) J Appl Cryst 29:305

    Google Scholar 

  71. Spiering H, Meisner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65

    Google Scholar 

  72. Meissner E, Köppen H, Spiering H, Gütlich P (1983) Chem Phys Lett 95:163

    Google Scholar 

  73. Adler P, Wiehl L, Meissner E, Köhler CP, Spiering H, Gütlich P (1987) J Phys Chem Solids 48:517

    Google Scholar 

  74. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  75. Wiehl L (1993) Acta Cryst B49:289

    Google Scholar 

  76. Jeftic J, Romstedt H, Hauser A (1996) J Phys Chem Solids 57:1743

    Google Scholar 

  77. Jeftic J, Matsarski M, Hauser A, Goujon A, Codjovi E, Linarès J, Varret F (2001) Polyhedron 20:1599

    Google Scholar 

  78. Jung J, Schmitt G, Wiehl L, Hauser A, Knorr K, Spiering H, Gütlich P (1996) Z Phys B Condens Matter 100:523

    Google Scholar 

  79. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  80. Real JA, Andréz E, Muñoz MC, Julve M, Granier T, Bousseksou A, Varret F (1995) Science 268:265

    Google Scholar 

  81. Zarembowitch J, Roux C, Boillot ML, Claude R, Itie JP, Polian A, Boltec M (1993) Mol Cryst Liq Cryst 234:247

    Google Scholar 

  82. Gütlich P, Köppen H, Steinhäuser HG (1980) Chem Phys Lett 74:3

    Google Scholar 

  83. Salmon L, Donnadieu B, Bousseksou A, Tuchagues JP (1999) C R Acad Sci Ser IIc Chim 305

    Google Scholar 

  84. Kim CD, Pillet S, Wu G, Fullagar WK, Coppens P (2002) Acta Cryst A58:133

    Google Scholar 

  85. Moffat K (2001) Chem Rev 101:1569

    Google Scholar 

  86. MacLean EJ, McGrath CM, O’Connor CJ, Sangregorio C, Seddon JMW, Sinn E, Sowrey FE, Teat SJ, Terry AE, Vaughan GBM, Young NA (2003) Chem. Eur. J. 921:5314

    Google Scholar 

  87. Huby N, Guérin L, Collet E, Toupet L, Ameline JC, Cailleau H, Roisnel T, Tayagaki T, Tanaka K (2003) Phys. Rev. B 69:020101

    Google Scholar 

  88. Marchivie M, Guionneau P, Létard JF, Chasseau D, Howard JAK (2004) J. Phys. Chem. Sol. 65:17

    Google Scholar 

  89. Real JA, Gaspar AB, Niel V, Munoz MC (2003) Coord. Chem. Rev. 236:121.

    Google Scholar 

  90. Marchivie M, Guionneau P, Létard JF, Chasseau D (2003) Acta Cryst. B59:479

    Google Scholar 

  91. Marchivie M (2003) PhD, University Bordeaux I, N° 2797. Marchivie M, Guionneau P, Létard JF, Chasseau D (2004) submitted to Acta Cryst. B.

    Google Scholar 

  92. Alvarez S (2003) J. Am. Chem. Soc. 125:6795

    Google Scholar 

  93. Chernyshov D, Hostettler M, Törnroos KW, Bürgi HB (2003) Angew. Chem. Int. Ed. 42:3825.

    Google Scholar 

Download references

Acknowledgment

The authors thank the European community for supporting our research through the TMR network TOSS ERB-FMRX-CT98-0199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guionneau .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Guionneau, P., Marchivie, M., Bravic, G., Létard, JF., Chasseau, D. Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95414

Download citation

  • DOI: https://doi.org/10.1007/b95414

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics