Skip to main content
Erschienen in: Cellulose 8/2018

31.05.2018 | Original Paper

Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching

verfasst von: Ismail Muhamad Fareez, Nur Ain Ibrahim, Wan Mohd Hanif Wan Yaacob, Nur Amira Mamat Razali, Ainil Hawa Jasni, Fauziah Abdul Aziz

Erschienen in: Cellulose | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose, being an abundantly available natural biopolymer, has a high potential to replace synthetic fibre. However, a paucity of knowledge and awareness on the use of cellulose, and agricultural waste base in particular, hampers efforts to harness this highly biodegradable resource to its full potential. This study aimed to extract and characterise cellulose obtained from pineapple (Ananas comosus) leaves of cultivar Josapine. Chemical composition analysis found that the pineapple leaves contain 11.8% lignin and 55.1% holocellulose, of which 32.6% is alpha cellulose. This extracted cellulose is light yellow to pure white in colour. The extraction of cellulose trace amounts of lignin was found to be between 0.4 and 2.8%. SEM micrograph of pineapple leaves shows fibrils 36 µm in diameter while the sample cellulose has defibrillated fibres with an average diameter ranging from 4.28 to 3.12 μm. Viscosity tests show the molecular weight (MW) at 3.8671 × 10−4 to 1.0560 × 10−4 and the degree of polymerisation of 447–107, respectively. Characterisation using X-ray diffraction (XRD), Raman and Fourier-transform infrared (FTIR) spectroscopy shows the cellulose samples are cellulose I. As compared to control, XRD data shows considerably higher percentage of crystallinity (82.90–85.41%) in all bleached sample with crystal size ranging from 3.564 to 3.807 nm. In conclusion, the extraction of cellulose from pineapple leaves using 2% NaOH and hypochlorite bleaching retains the original structure of cellulose in the pineapple leaves. The unique properties of cellulose microfibre from Josapine pineapple leaf fibres have great potential for further utilisation in various industries.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475CrossRef Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475CrossRef
Zurück zum Zitat Acharjee TC, Jiang Z, Haynes RD, Lee YY (2017) Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass. Bioresour Technol 244:1049–1054CrossRefPubMed Acharjee TC, Jiang Z, Haynes RD, Lee YY (2017) Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass. Bioresour Technol 244:1049–1054CrossRefPubMed
Zurück zum Zitat Akhtar N, Goyal D, Goyal A (2015) Biodegradation of cellulose and agricultural waste material. Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press, Boca Raton Akhtar N, Goyal D, Goyal A (2015) Biodegradation of cellulose and agricultural waste material. Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press, Boca Raton
Zurück zum Zitat Alves VD, Freitas F, Costa N, Carvalheira M, Oliveira R, Gonçalves MP, Reis MA (2010) Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohyd Polym 79:981–988CrossRef Alves VD, Freitas F, Costa N, Carvalheira M, Oliveira R, Gonçalves MP, Reis MA (2010) Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohyd Polym 79:981–988CrossRef
Zurück zum Zitat Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed
Zurück zum Zitat Aziz FA et al (2016) The treated cellulose micro/nano fibers (CMNF) from bioresources in malaysia. Mater Sci Forum 846:434–439CrossRef Aziz FA et al (2016) The treated cellulose micro/nano fibers (CMNF) from bioresources in malaysia. Mater Sci Forum 846:434–439CrossRef
Zurück zum Zitat Azraaie N et al (2016) Cellulose microfibrils/nanofibrils (CMNF) produced from banana (Musa acuminata) pseudo-stem wastes: isolation and characterization. Mater Sci Forum 846:448–453CrossRef Azraaie N et al (2016) Cellulose microfibrils/nanofibrils (CMNF) produced from banana (Musa acuminata) pseudo-stem wastes: isolation and characterization. Mater Sci Forum 846:448–453CrossRef
Zurück zum Zitat Buffiere J, Balogh-Michels Z, Borrega M, Geiger T, Zimmermann T, Sixta H (2017) The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohyd Polym 178:48–56CrossRef Buffiere J, Balogh-Michels Z, Borrega M, Geiger T, Zimmermann T, Sixta H (2017) The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohyd Polym 178:48–56CrossRef
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRefPubMed Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRefPubMed
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef
Zurück zum Zitat Chandrasekhar S, Satyanarayana K, Pramada P, Raghavan P, Gupta T (2003) Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci 38:3159–3168CrossRef Chandrasekhar S, Satyanarayana K, Pramada P, Raghavan P, Gupta T (2003) Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci 38:3159–3168CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811CrossRef
Zurück zum Zitat Chen Y, Fan D, Han Y, Li G, Wang S (2017) Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose 24:5431–5442CrossRef Chen Y, Fan D, Han Y, Li G, Wang S (2017) Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose 24:5431–5442CrossRef
Zurück zum Zitat Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81:720–725CrossRef Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81:720–725CrossRef
Zurück zum Zitat Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86:1790–1798CrossRef Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86:1790–1798CrossRef
Zurück zum Zitat Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090CrossRef Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090CrossRef
Zurück zum Zitat dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef
Zurück zum Zitat Fan LT, Gharpuray MM, Lee Y-H (1987) Nature of cellulosic material. Cellulose Hydrolysis. Springer, BerlinCrossRef Fan LT, Gharpuray MM, Lee Y-H (1987) Nature of cellulosic material. Cellulose Hydrolysis. Springer, BerlinCrossRef
Zurück zum Zitat Fawcett TG, Faber J, Crane D, Kabekkodu S, Sagnella D, Blanton J (2008) A reference diffraction database for non-crystalline, partially crystalline and amorphous materials. International Centre for Diffraction Data (ICDD) Polymer Subcommittee Meeting Fawcett TG, Faber J, Crane D, Kabekkodu S, Sagnella D, Blanton J (2008) A reference diffraction database for non-crystalline, partially crystalline and amorphous materials. International Centre for Diffraction Data (ICDD) Polymer Subcommittee Meeting
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Ibrahim NA, Azraaie N, Abidin Z, Mohd NA, Razali NAM, Aziz FA, Zakaria S (2014) Preparation and characterization of alpha cellulose of pineapple (Ananas comosus) leaf fibres (PALF). Adv Mat Res 2014:147–150 Ibrahim NA, Azraaie N, Abidin Z, Mohd NA, Razali NAM, Aziz FA, Zakaria S (2014) Preparation and characterization of alpha cellulose of pineapple (Ananas comosus) leaf fibres (PALF). Adv Mat Res 2014:147–150
Zurück zum Zitat Ishak WHW, Yin OS, Ahmad I (2016) Effect of micro-and nano-size of cellulose particles extracted from rice husk on the properties of hydrogels. Polym Polym Compos 24:783CrossRef Ishak WHW, Yin OS, Ahmad I (2016) Effect of micro-and nano-size of cellulose particles extracted from rice husk on the properties of hydrogels. Polym Polym Compos 24:783CrossRef
Zurück zum Zitat Jin X-J, Pascal Kamdem D (2009) Chemical composition, crystallinity and crystallite cellulose size in populus hybrids and aspen. Cellulose Chem Technol 43:229 Jin X-J, Pascal Kamdem D (2009) Chemical composition, crystallinity and crystallite cellulose size in populus hybrids and aspen. Cellulose Chem Technol 43:229
Zurück zum Zitat Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979CrossRef
Zurück zum Zitat Khelifa F, Habibi Y, Dubois P (2016) Nanocellulose-based polymeric blends for coating applications. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. William Andrew: Applied Science, Oxford Khelifa F, Habibi Y, Dubois P (2016) Nanocellulose-based polymeric blends for coating applications. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. William Andrew: Applied Science, Oxford
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281CrossRef Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281CrossRef
Zurück zum Zitat Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohyd Polym 90:1609–1613CrossRef Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohyd Polym 90:1609–1613CrossRef
Zurück zum Zitat Lizundia E et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113CrossRef Lizundia E et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113CrossRef
Zurück zum Zitat Łojewska J, Miśkowiec P, Łojewski T, Proniewicz L (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520CrossRef Łojewska J, Miśkowiec P, Łojewski T, Proniewicz L (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520CrossRef
Zurück zum Zitat Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573CrossRef Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573CrossRef
Zurück zum Zitat Ludwicka K, Jedrzejczak-Krzepkowska M, Kubiak K, Kolodziejczyk M, Pankiewicz T, Bielecki S (2017) Medical and cosmetic applications of bacterial nanocellulose. Bacterial Nanocellulose. Elsevier, Netherlands Ludwicka K, Jedrzejczak-Krzepkowska M, Kubiak K, Kolodziejczyk M, Pankiewicz T, Bielecki S (2017) Medical and cosmetic applications of bacterial nanocellulose. Bacterial Nanocellulose. Elsevier, Netherlands
Zurück zum Zitat Messiry M (2014) Morphological analysis of micro-fibrillated cellulose from different raw materials for fiber plastic composites. J Text Sci Eng 4:1 Messiry M (2014) Morphological analysis of micro-fibrillated cellulose from different raw materials for fiber plastic composites. J Text Sci Eng 4:1
Zurück zum Zitat Mohamed A, Sapuan S, Shahjahan M, Khalina A (2010) Effects of simple abrasive combing and pretreatments on the properties of pineapple leaf fibers (palf) and palf-vinyl ester composite adhesion. Polym Plast Technol 49:972–978CrossRef Mohamed A, Sapuan S, Shahjahan M, Khalina A (2010) Effects of simple abrasive combing and pretreatments on the properties of pineapple leaf fibers (palf) and palf-vinyl ester composite adhesion. Polym Plast Technol 49:972–978CrossRef
Zurück zum Zitat Mohammadkazemi F, Doosthoseini K, Ganjian E, Azin M (2015) Manufacturing of bacterial nano-cellulose reinforced fiber − cement composites. Constr Build Mater 101:958–964CrossRef Mohammadkazemi F, Doosthoseini K, Ganjian E, Azin M (2015) Manufacturing of bacterial nano-cellulose reinforced fiber − cement composites. Constr Build Mater 101:958–964CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
Zurück zum Zitat Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohyd Polym 118:1–8CrossRef Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohyd Polym 118:1–8CrossRef
Zurück zum Zitat Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef
Zurück zum Zitat Neto ARS et al (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crops Prod 64:68–78CrossRef Neto ARS et al (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crops Prod 64:68–78CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340:417–428CrossRef Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340:417–428CrossRef
Zurück zum Zitat Owolabi AF, Haafiz MM, Hossain MS, Hussin MH, Fazita MN (2017) Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. Int J Biol Macromol 95:1228–1234CrossRefPubMed Owolabi AF, Haafiz MM, Hossain MS, Hussin MH, Fazita MN (2017) Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. Int J Biol Macromol 95:1228–1234CrossRefPubMed
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral
Zurück zum Zitat Rambabu N, Panthapulakkal S, Sain M, Dalai A (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754CrossRef Rambabu N, Panthapulakkal S, Sain M, Dalai A (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754CrossRef
Zurück zum Zitat Rosa M et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92CrossRef Rosa M et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92CrossRef
Zurück zum Zitat Sabo R, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review. J Renew Mater 4:297–312CrossRef Sabo R, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review. J Renew Mater 4:297–312CrossRef
Zurück zum Zitat Sanoj P, Balasubramanian K (2014) High performance structural nano cellulose composites for motor vehicle spring suspension system. Int J Plast Technol 18:383–389CrossRef Sanoj P, Balasubramanian K (2014) High performance structural nano cellulose composites for motor vehicle spring suspension system. Int J Plast Technol 18:383–389CrossRef
Zurück zum Zitat Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll 57:178–186CrossRef Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll 57:178–186CrossRef
Zurück zum Zitat Shamsudin R, Daud WRW, Takriff MS, Hassan O (2007) Physicochemical properties of the Josapine variety of pineapple fruit. Int J Food Eng 3:1–12CrossRef Shamsudin R, Daud WRW, Takriff MS, Hassan O (2007) Physicochemical properties of the Josapine variety of pineapple fruit. Int J Food Eng 3:1–12CrossRef
Zurück zum Zitat Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng Y (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122CrossRef Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng Y (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122CrossRef
Zurück zum Zitat Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRef
Zurück zum Zitat Stephen B, Parungao MM (2003) Production of wood-decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Mycol Res 107:231–235CrossRef Stephen B, Parungao MM (2003) Production of wood-decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Mycol Res 107:231–235CrossRef
Zurück zum Zitat Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef
Zurück zum Zitat Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRefPubMed Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRefPubMed
Zurück zum Zitat Tang J, Li X, Bao L, Chen L, Hong FF (2017) Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J Chem Technol Biotechnol 92:1218–1228CrossRef Tang J, Li X, Bao L, Chen L, Hong FF (2017) Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J Chem Technol Biotechnol 92:1218–1228CrossRef
Zurück zum Zitat Tappi T (2002) Technical Association of the Pulp and Paper Industry, TAPPI 222 om-06: Acid-insoluble lignin in wood and pulp. Angewandte Chemie International Edition Tappi T (2002) Technical Association of the Pulp and Paper Industry, TAPPI 222 om-06: Acid-insoluble lignin in wood and pulp. Angewandte Chemie International Edition
Zurück zum Zitat Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef
Zurück zum Zitat Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113:1270–1275CrossRef Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113:1270–1275CrossRef
Zurück zum Zitat Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu J, Jin Y (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu J, Jin Y (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef
Zurück zum Zitat Werner A, Schmitt V, Sèbe G, Héroguez V (2017) Synthesis of surfactant-free micro-and nanolatexes from Pickering emulsions stabilized by acetylated cellulose nanocrystals. Polym Chem 8:6064–6072CrossRef Werner A, Schmitt V, Sèbe G, Héroguez V (2017) Synthesis of surfactant-free micro-and nanolatexes from Pickering emulsions stabilized by acetylated cellulose nanocrystals. Polym Chem 8:6064–6072CrossRef
Zurück zum Zitat Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohyd Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohyd Res 160:113–129CrossRef
Zurück zum Zitat Wise LE, Murphy M, Adieco AAD (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trad J 122:35–43 Wise LE, Murphy M, Adieco AAD (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trad J 122:35–43
Zurück zum Zitat Ya’acob WMHW, Aziz FA (2017) Nanocellulose: a promising material for engineering-an overview. Int J Mater Eng Innov 8:71–86CrossRef Ya’acob WMHW, Aziz FA (2017) Nanocellulose: a promising material for engineering-an overview. Int J Mater Eng Innov 8:71–86CrossRef
Zurück zum Zitat Yue Y, Han G, Wu Q (2013) Transitional properties of cotton fibers from cellulose I to cellulose II structure. BioResources 8:6460–6471CrossRef Yue Y, Han G, Wu Q (2013) Transitional properties of cotton fibers from cellulose I to cellulose II structure. BioResources 8:6460–6471CrossRef
Zurück zum Zitat Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRef Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRef
Metadaten
Titel
Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching
verfasst von
Ismail Muhamad Fareez
Nur Ain Ibrahim
Wan Mohd Hanif Wan Yaacob
Nur Amira Mamat Razali
Ainil Hawa Jasni
Fauziah Abdul Aziz
Publikationsdatum
31.05.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1878-0

Weitere Artikel der Ausgabe 8/2018

Cellulose 8/2018 Zur Ausgabe