Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 7/2020

23.05.2020 | Research Article-Mechanical Engineering

Characterization of Fully Developed Pressure-Driven, Shear-Driven and Combined Pressure and Shear Driven Flow of Sisko Fluids Through Rectangular Channels

verfasst von: Sumanta Chaudhuri, Satyabrata Sahoo

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pressure-driven, shear-driven and combined pressure and shear driven flow of a non-Newtonian Sisko fluid through rectangular channels is investigated. Inclusion of the aspect ratio in the formulation yields a highly nonlinear partial differential equation, which is not reported in the existing literature. Thus, neither analytical nor numerical solution to this equation is available in the open literature. In the present study, the partial differential equation, describing the flow, is solved employing the finite difference method. Explicit method is adopted, and the solution for the non-dimensional velocity and wall shear stress is obtained. An exact solution for the flow of a Sisko fluid, for a special case (for non-Newtonian index 2), through large parallel plates (aspect ratio to be zero) is obtained. Expression for the friction factor, including the effect of the aspect ratio, is given. The effects of the aspect ratio, Sisko fluid parameter, non-Newtonian index on the non-dimensional velocity distribution and shear-stress distribution are analyzed both for shear-thinning and shear-thickening fluids. The results indicate that for pressure-driven flow, the effect of the aspect ratio on the velocity is negligible when it is less than 0.1. In case of shear-driven flow and combined pressure and shear driven flow also, the characteristics of flow through large parallel plates exist in nearly 50% of the channel for the aspect ratio of 0.1 or less, which means that for up to 50% of the channel, near the core, the parallel plates assumption will generate reasonably accurate results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shashikumar, N.S.; Gireesha, B.J.; Mahantesh, B.; Prasannakumar, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nano liquids embedded with aluminium and titanium alloy nano particles in micro channel with partial slips and convective conditions. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3638–3658 (2019)CrossRef Shashikumar, N.S.; Gireesha, B.J.; Mahantesh, B.; Prasannakumar, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nano liquids embedded with aluminium and titanium alloy nano particles in micro channel with partial slips and convective conditions. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3638–3658 (2019)CrossRef
3.
Zurück zum Zitat Chamkha, A.J.: Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21, 740–746 (2000)CrossRef Chamkha, A.J.: Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21, 740–746 (2000)CrossRef
5.
Zurück zum Zitat Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-, Mudlaf A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42, 81–90 (2008)CrossRef Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-, Mudlaf A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42, 81–90 (2008)CrossRef
6.
Zurück zum Zitat Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45, 2509–2525 (2002)CrossRef Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45, 2509–2525 (2002)CrossRef
7.
Zurück zum Zitat Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in micro channels: a comprehensive review. Powder Technol. 332, 287–322 (2018)CrossRef Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in micro channels: a comprehensive review. Powder Technol. 332, 287–322 (2018)CrossRef
8.
Zurück zum Zitat Umaathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudahf, A.: Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Anal. Model. Control 14, 397–415 (2009)CrossRef Umaathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudahf, A.: Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Anal. Model. Control 14, 397–415 (2009)CrossRef
9.
Zurück zum Zitat Alsabey, A.I.; Habibi, S.; Ghalambaz, M.; Chamkha, A.J.; Hashim, I.: Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. Int. J. Numer. Methods Heat Fluid Flow 29, 3756–3780 (2019)CrossRef Alsabey, A.I.; Habibi, S.; Ghalambaz, M.; Chamkha, A.J.; Hashim, I.: Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. Int. J. Numer. Methods Heat Fluid Flow 29, 3756–3780 (2019)CrossRef
10.
Zurück zum Zitat Alsabery, A.I.; Selimefendigil, F.; Hashim, I.; Chamkha, A.J.; Ghalambaz, M.: Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int. J. Heat Mass Transf. 140, 331–345 (2019)CrossRef Alsabery, A.I.; Selimefendigil, F.; Hashim, I.; Chamkha, A.J.; Ghalambaz, M.: Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int. J. Heat Mass Transf. 140, 331–345 (2019)CrossRef
11.
Zurück zum Zitat Ghalambaz, M.; Mehryan, S.A.M.; Ismael, M.A.; Chamkha, A.J.; Wen, D.: Fluid-structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-12-2018-0826 CrossRef Ghalambaz, M.; Mehryan, S.A.M.; Ismael, M.A.; Chamkha, A.J.; Wen, D.: Fluid-structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. Int. J. Numer. Methods Heat Fluid Flow (2019). https://​doi.​org/​10.​1108/​HFF-12-2018-0826 CrossRef
12.
Zurück zum Zitat Ghalambaz, M.; Mehryan, S.A.M.; Izadpanhai, E.; Chamkha, A.J.; Wen, D.: MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2019)CrossRef Ghalambaz, M.; Mehryan, S.A.M.; Izadpanhai, E.; Chamkha, A.J.; Wen, D.: MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2019)CrossRef
13.
Zurück zum Zitat Joseph, D.D.; Narain, A.; Riccius, O.: Shear wave speeds and elastic moduli for different liquids-part 1: theory. J. Fluid Mech. 171(1), 289–308 (1986)CrossRef Joseph, D.D.; Narain, A.; Riccius, O.: Shear wave speeds and elastic moduli for different liquids-part 1: theory. J. Fluid Mech. 171(1), 289–308 (1986)CrossRef
14.
Zurück zum Zitat Filalai, A.; Lyes, K.; Siginer, D.A.; Nemouchi, Z.: Graetz problem with non-linear visco-elastic fluids in non-circular tubes. Int. J. Therm. Sci. 66, 50–60 (2012)CrossRef Filalai, A.; Lyes, K.; Siginer, D.A.; Nemouchi, Z.: Graetz problem with non-linear visco-elastic fluids in non-circular tubes. Int. J. Therm. Sci. 66, 50–60 (2012)CrossRef
15.
Zurück zum Zitat Siginer, D.A.; Letelier, M.A.: Heat transfer asymptote in laminar of non-linear visco-elastic fluids in straight non-circular tubes. Int. J. Eng. Sci. 48, 1544–1562 (2010)CrossRef Siginer, D.A.; Letelier, M.A.: Heat transfer asymptote in laminar of non-linear visco-elastic fluids in straight non-circular tubes. Int. J. Eng. Sci. 48, 1544–1562 (2010)CrossRef
16.
Zurück zum Zitat Narain, A.: On K-BKZ and other visco-elastic models as continuum generalizations of the classical spring-dashpot models. Rheol. Acta 25(1), 1–14 (1986)CrossRef Narain, A.: On K-BKZ and other visco-elastic models as continuum generalizations of the classical spring-dashpot models. Rheol. Acta 25(1), 1–14 (1986)CrossRef
17.
Zurück zum Zitat Tso, C.P.; Sheela-Fransica, J.; Hung, Y.M.: Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. J. Non Newton. Fluid Mech. 165, 625–630 (2010)CrossRef Tso, C.P.; Sheela-Fransica, J.; Hung, Y.M.: Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. J. Non Newton. Fluid Mech. 165, 625–630 (2010)CrossRef
18.
Zurück zum Zitat Wang, L.; Jian, Y.; Liu, Q.; Li, F.; Chang, L.: Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel plates. Colloids Surf. Physicochem. Eng. Asp. 494, 87–94 (2016)CrossRef Wang, L.; Jian, Y.; Liu, Q.; Li, F.; Chang, L.: Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel plates. Colloids Surf. Physicochem. Eng. Asp. 494, 87–94 (2016)CrossRef
19.
Zurück zum Zitat Danish, M.; Kumar, S.; Kumar, S.: Exact analytical solutions for the Poiseuille and Couette–Poiseuille flow of third grade fluid between parallel plates. Commun. Non Linear Sci. Numer. Simul. 17, 1089–1097 (2012)MathSciNetCrossRef Danish, M.; Kumar, S.; Kumar, S.: Exact analytical solutions for the Poiseuille and Couette–Poiseuille flow of third grade fluid between parallel plates. Commun. Non Linear Sci. Numer. Simul. 17, 1089–1097 (2012)MathSciNetCrossRef
20.
Zurück zum Zitat Akbarzadeh, P.: Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a non-Newtonian third grade fluids model. Comput. Methods Progr. Biomed. 126, 3–19 (2016)CrossRef Akbarzadeh, P.: Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a non-Newtonian third grade fluids model. Comput. Methods Progr. Biomed. 126, 3–19 (2016)CrossRef
21.
Zurück zum Zitat Sisko, A.W.: The flow of lubricating greases. Ind. Eng. Chem. Res. 50, 1789–1790 (1958)CrossRef Sisko, A.W.: The flow of lubricating greases. Ind. Eng. Chem. Res. 50, 1789–1790 (1958)CrossRef
22.
Zurück zum Zitat Khan, M.; Munwar, S.; Abbasbandy, S.: Steady flow and heat transfer of a Sisko fluid in annular pipe. Int. J. Heat Mass Transf. 53, 1290–1297 (2010)CrossRef Khan, M.; Munwar, S.; Abbasbandy, S.: Steady flow and heat transfer of a Sisko fluid in annular pipe. Int. J. Heat Mass Transf. 53, 1290–1297 (2010)CrossRef
23.
Zurück zum Zitat Liao, S.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)MathSciNetCrossRef Liao, S.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)MathSciNetCrossRef
24.
Zurück zum Zitat Chaudhuri, S.; Das, P.K.: Semi-analytical solution of the heat transfer including viscous dissipation in steady flow of Sisko fluids in cylindrical tubes. J. Heat Transf. 143, 071701-1–071701-9 (2018) Chaudhuri, S.; Das, P.K.: Semi-analytical solution of the heat transfer including viscous dissipation in steady flow of Sisko fluids in cylindrical tubes. J. Heat Transf. 143, 071701-1–071701-9 (2018)
25.
Zurück zum Zitat Hatami, M.; Ganji, D.D.: Thermal and flow analysis of micro channel heat sink (MCHS) cooled by Cu-water nano fluid by porous media approach and least square method. Energy Convers. Manag. 78, 347–358 (2014)CrossRef Hatami, M.; Ganji, D.D.: Thermal and flow analysis of micro channel heat sink (MCHS) cooled by Cu-water nano fluid by porous media approach and least square method. Energy Convers. Manag. 78, 347–358 (2014)CrossRef
26.
Zurück zum Zitat Hatami, M.; Sheikholeslami, M.; Ganji, D.D.: Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 253, 769–779 (2014)CrossRef Hatami, M.; Sheikholeslami, M.; Ganji, D.D.: Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 253, 769–779 (2014)CrossRef
27.
Zurück zum Zitat Siddiqui, A.M.; Ansari, A.R.; Ahmad, A.; Ahmad, N.: On Taylor’s scraping problem and flow of a Sisko fluid. Math. Model. Anal. 14, 515–529 (2009)MathSciNetCrossRef Siddiqui, A.M.; Ansari, A.R.; Ahmad, A.; Ahmad, N.: On Taylor’s scraping problem and flow of a Sisko fluid. Math. Model. Anal. 14, 515–529 (2009)MathSciNetCrossRef
28.
Zurück zum Zitat Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)MathSciNetCrossRef Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)MathSciNetCrossRef
29.
Zurück zum Zitat Sajid, M.; Hayat, T.: Wire coating analysis by withdrawal from a bath of Sisko fluid. Appl. Math. Comput. 199, 13–22 (2008)MathSciNetMATH Sajid, M.; Hayat, T.: Wire coating analysis by withdrawal from a bath of Sisko fluid. Appl. Math. Comput. 199, 13–22 (2008)MathSciNetMATH
30.
Zurück zum Zitat Nadeem, S.; Akbar, N.S.; Vajravelu, K.: Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. Int. J. Comput. Math. 88, 1013–1023 (2011)MathSciNetCrossRef Nadeem, S.; Akbar, N.S.; Vajravelu, K.: Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. Int. J. Comput. Math. 88, 1013–1023 (2011)MathSciNetCrossRef
31.
Zurück zum Zitat Nadeem, S.; Akbar, N.S.: Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta. Mech. Sin. 26, 675–683 (2010)MathSciNetCrossRef Nadeem, S.; Akbar, N.S.: Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta. Mech. Sin. 26, 675–683 (2010)MathSciNetCrossRef
32.
Zurück zum Zitat Zeeshan, A.; Ali, N.; Ahmed, R.; Waqas, M.; Khan, W.A.: A mathematical frame work for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effect. Comput. Methods Progr. Biomed. 182, 105040 (2019)CrossRef Zeeshan, A.; Ali, N.; Ahmed, R.; Waqas, M.; Khan, W.A.: A mathematical frame work for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effect. Comput. Methods Progr. Biomed. 182, 105040 (2019)CrossRef
33.
Zurück zum Zitat Shaheen, A.; Asjad, M.I.: Peristaltic flow of a Sisko fluid over a convectively heated surface with viscous dissipation. J. Phys. Chem. Solids 122, 210–217 (2018)CrossRef Shaheen, A.; Asjad, M.I.: Peristaltic flow of a Sisko fluid over a convectively heated surface with viscous dissipation. J. Phys. Chem. Solids 122, 210–217 (2018)CrossRef
34.
Zurück zum Zitat Ali, M.; Khan, W.A.; Sultan, F.; Shahzad, M.: Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface. Phys. A 550, 124012 (2019)CrossRef Ali, M.; Khan, W.A.; Sultan, F.; Shahzad, M.: Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface. Phys. A 550, 124012 (2019)CrossRef
35.
Zurück zum Zitat Chaudhuri, S.; Sahoo, S.: Effect of aspect ratio on flow characteristics of magnetohydrodynamic (MHD) third grade fluid flow through a rectangular channel. Sadhana 40, 106 (2018)MathSciNetCrossRef Chaudhuri, S.; Sahoo, S.: Effect of aspect ratio on flow characteristics of magnetohydrodynamic (MHD) third grade fluid flow through a rectangular channel. Sadhana 40, 106 (2018)MathSciNetCrossRef
36.
Zurück zum Zitat Gupta, B.R.: Polymer Processing Technology. Asian Books Private Limited, New Delhi (2008) Gupta, B.R.: Polymer Processing Technology. Asian Books Private Limited, New Delhi (2008)
Metadaten
Titel
Characterization of Fully Developed Pressure-Driven, Shear-Driven and Combined Pressure and Shear Driven Flow of Sisko Fluids Through Rectangular Channels
verfasst von
Sumanta Chaudhuri
Satyabrata Sahoo
Publikationsdatum
23.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 7/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04621-4

Weitere Artikel der Ausgabe 7/2020

Arabian Journal for Science and Engineering 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.