Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Characterization of Nanoparticles Under Physiological Conditions

verfasst von : K. A. Eslahian, T. Lang, C. Bantz, R. Keller, R. Sperling, D. Docter, R. Stauber, M. Maskos

Erschienen in: Measuring Biological Impacts of Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, well-established characterization methods for nanoparticles (NPs) are discussed, in particular their application under physiological conditions. The impact of different media, mimicking physiological conditions, on NP stability in terms of physiological ionic strength and formation of the NP–protein corona is described. In order to characterize NPs under physiological conditions, we distinguish between scattering and correlation methods, microscopy-based methods, and methods based on hydrodynamic separation. Features and limitations of relevant characterization methods are reviewed, as well as challenges arising in physiological media from enhanced aggregation tendency and the presence of proteins. We conclude that no available method for NP characterization in physiological media is able to describe the colloidal system completely and satisfactory. On the contrary, combining well-chosen analytical methods by taking benefits and disadvantages into account may provide detailed characterization results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson P, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. Publications Office of the European Union JRC73260, ISBN: 978-92-79-25602-8 Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson P, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. Publications Office of the European Union JRC73260, ISBN: 978-92-79-25602-8
2.
Zurück zum Zitat Williams D (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef Williams D (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef
3.
Zurück zum Zitat Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef
4.
Zurück zum Zitat Warheit D (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185CrossRef Warheit D (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185CrossRef
5.
Zurück zum Zitat Israelachvili J (2011) Intermolecular and surface forces. Elsevier/Academic, Amsterdam Israelachvili J (2011) Intermolecular and surface forces. Elsevier/Academic, Amsterdam
6.
Zurück zum Zitat Landau L, Lifshitz E, Pitaevskij L (1998) Electrodynamics of continuous media. Butterworth-Heinemann, Oxford, 8 Landau L, Lifshitz E, Pitaevskij L (1998) Electrodynamics of continuous media. Butterworth-Heinemann, Oxford, 8
7.
Zurück zum Zitat Russel W, Saville D, Schowalter W (1989) Colloidal dispersions. Cambridge University Press, CambridgeCrossRef Russel W, Saville D, Schowalter W (1989) Colloidal dispersions. Cambridge University Press, CambridgeCrossRef
8.
Zurück zum Zitat Maskos M, Stauber R (2011) In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Oxford Maskos M, Stauber R (2011) In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Oxford
9.
Zurück zum Zitat Kasper J, Hermanns M, Bantz C, Koshkina O, Lang T, Maskos M, Pohl C, Unger R, Kirkpatrick C (2013) Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Arch Toxicol 87(6):1053–1065CrossRef Kasper J, Hermanns M, Bantz C, Koshkina O, Lang T, Maskos M, Pohl C, Unger R, Kirkpatrick C (2013) Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Arch Toxicol 87(6):1053–1065CrossRef
10.
Zurück zum Zitat Röcker C, Pötzl M, Zhang F, Parak W, Nienhaus G (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580CrossRef Röcker C, Pötzl M, Zhang F, Parak W, Nienhaus G (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580CrossRef
11.
Zurück zum Zitat Kittler S, Greulich C, Gebauer J, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet J, Vallet-Regi M, Zellner R, Köller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512CrossRef Kittler S, Greulich C, Gebauer J, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet J, Vallet-Regi M, Zellner R, Köller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512CrossRef
12.
Zurück zum Zitat Cho K, Lee Y, Lee C-H, Lee K, Kim Y, Choi H, Ryu P-D, Lee S, Joo S-W (2008) Selective aggregation mechanism of unmodified gold nanoparticles in detection of single nucleotide polymorphism. J Phys Chem C 112(23):8629–8633CrossRef Cho K, Lee Y, Lee C-H, Lee K, Kim Y, Choi H, Ryu P-D, Lee S, Joo S-W (2008) Selective aggregation mechanism of unmodified gold nanoparticles in detection of single nucleotide polymorphism. J Phys Chem C 112(23):8629–8633CrossRef
13.
Zurück zum Zitat Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89CrossRef Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89CrossRef
14.
Zurück zum Zitat Gebauer J, Treuel L (2011) Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354(2):546–554CrossRef Gebauer J, Treuel L (2011) Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354(2):546–554CrossRef
15.
Zurück zum Zitat Derjaguin B, Storozhilova A, Rabinovich Y (1966) Experimental verification of the theory of thermophoresis of aerosol particles. J Colloid Interface Sci 21(1):35–58CrossRef Derjaguin B, Storozhilova A, Rabinovich Y (1966) Experimental verification of the theory of thermophoresis of aerosol particles. J Colloid Interface Sci 21(1):35–58CrossRef
16.
Zurück zum Zitat Holmberg K (2002) Handbook of applied surface and colloid chemistry. Wiley, Chichester Holmberg K (2002) Handbook of applied surface and colloid chemistry. Wiley, Chichester
17.
Zurück zum Zitat Gregory J (2009) Monitoring particle aggregation processes. Colloids, polymers and surfactants. Special Issue in honour of Brian Vincent, vol 147–148, pp 109–123 Gregory J (2009) Monitoring particle aggregation processes. Colloids, polymers and surfactants. Special Issue in honour of Brian Vincent, vol 147–148, pp 109–123
18.
Zurück zum Zitat Monopoli M, Åberg C, Salvati A, Dawson K (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786CrossRef Monopoli M, Åberg C, Salvati A, Dawson K (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786CrossRef
19.
Zurück zum Zitat Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105CrossRef Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105CrossRef
20.
Zurück zum Zitat Oberdörster G (2012) Nanotoxicology: in vitro-in vivo dosimetry. Environ Health Perspect 120(1):A13CrossRef Oberdörster G (2012) Nanotoxicology: in vitro-in vivo dosimetry. Environ Health Perspect 120(1):A13CrossRef
21.
Zurück zum Zitat Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196(4853):476–477CrossRef Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196(4853):476–477CrossRef
22.
Zurück zum Zitat Vroman L, Adams A (1969) Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf Sci 16:438–446CrossRef Vroman L, Adams A (1969) Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf Sci 16:438–446CrossRef
23.
Zurück zum Zitat Lynch I, Dawson K (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47CrossRef Lynch I, Dawson K (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47CrossRef
24.
Zurück zum Zitat Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S, Stauber R (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781CrossRef Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S, Stauber R (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781CrossRef
25.
Zurück zum Zitat Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson K, Linse S (2007) From the cover: understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055CrossRef Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson K, Linse S (2007) From the cover: understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055CrossRef
26.
Zurück zum Zitat Monopoli M, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson K (2011) Physical − chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRef Monopoli M, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson K (2011) Physical − chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRef
27.
Zurück zum Zitat Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan M, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509CrossRef Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan M, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509CrossRef
28.
Zurück zum Zitat Casals E, Pfaller T, Duschl A, Oostingh G, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632CrossRef Casals E, Pfaller T, Duschl A, Oostingh G, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632CrossRef
29.
Zurück zum Zitat Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer S, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber R (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167CrossRef Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer S, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber R (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167CrossRef
30.
Zurück zum Zitat Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270CrossRef Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270CrossRef
31.
Zurück zum Zitat Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115(37):18275–18283CrossRef Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115(37):18275–18283CrossRef
32.
Zurück zum Zitat Gebauer J, Malissek M, Simon S, Knauer S, Maskos M, Stauber R, Peukert W, Treuel L (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679CrossRef Gebauer J, Malissek M, Simon S, Knauer S, Maskos M, Stauber R, Peukert W, Treuel L (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679CrossRef
33.
Zurück zum Zitat Bharti B, Meissner J, Findenegg G (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27(16):9823–9833CrossRef Bharti B, Meissner J, Findenegg G (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27(16):9823–9833CrossRef
34.
Zurück zum Zitat Bantz C, Koshkina O, Lang T, Galla H-J, Kirkpatrick C, Stauber R, Maskos M (2014) The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 5:1774–1786CrossRef Bantz C, Koshkina O, Lang T, Galla H-J, Kirkpatrick C, Stauber R, Maskos M (2014) The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 5:1774–1786CrossRef
35.
Zurück zum Zitat Calvo P, Remuñán-López C, Vila-Jato J, Alonso M (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132CrossRef Calvo P, Remuñán-López C, Vila-Jato J, Alonso M (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132CrossRef
36.
Zurück zum Zitat Nikolic M, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45(39):6577–6580CrossRef Nikolic M, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45(39):6577–6580CrossRef
37.
Zurück zum Zitat Chen H, Wu X, Duan H, Wang Y, Wang L, Zhang M, Mao H (2009) Biocompatible polysiloxane-containing diblock copolymer PEO- b -PγMPS for coating magnetic nanoparticles. ACS Appl Mater Interfaces 1(10):2134–2140CrossRef Chen H, Wu X, Duan H, Wang Y, Wang L, Zhang M, Mao H (2009) Biocompatible polysiloxane-containing diblock copolymer PEO- b -PγMPS for coating magnetic nanoparticles. ACS Appl Mater Interfaces 1(10):2134–2140CrossRef
38.
Zurück zum Zitat Aggarwal P, Hall J, McLeland C, Dobrovolskaia M, McNeil S (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRef Aggarwal P, Hall J, McLeland C, Dobrovolskaia M, McNeil S (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRef
39.
Zurück zum Zitat Dobrovolskaia M, Germolec D, Weaver J (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414CrossRef Dobrovolskaia M, Germolec D, Weaver J (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414CrossRef
40.
Zurück zum Zitat Salvati A, Pitek A, Monopoli M, Prapainop K, Bombelli F, Hristov D, Kelly P, Aberg C, Mahon E, Dawson K (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143CrossRef Salvati A, Pitek A, Monopoli M, Prapainop K, Bombelli F, Hristov D, Kelly P, Aberg C, Mahon E, Dawson K (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143CrossRef
41.
Zurück zum Zitat Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin
42.
Zurück zum Zitat Lacerda S, Park J, Meuse C, Pristinski D, Becker M, Karim A, Douglas J (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379CrossRef Lacerda S, Park J, Meuse C, Pristinski D, Becker M, Karim A, Douglas J (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379CrossRef
43.
Zurück zum Zitat Rausch K, Reuter A, Fischer K, Schmidt M (2010) Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11):2836–2839CrossRef Rausch K, Reuter A, Fischer K, Schmidt M (2010) Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11):2836–2839CrossRef
44.
Zurück zum Zitat Jones C, Grainger D (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456CrossRef Jones C, Grainger D (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456CrossRef
45.
Zurück zum Zitat Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. Elkin 06, International Electrokinetics Conference, June 25–29, Nancy, France 309(2):194–224 Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. Elkin 06, International Electrokinetics Conference, June 25–29, Nancy, France 309(2):194–224
46.
Zurück zum Zitat Hunter R (1993) Introduction to modern colloid science. Oxford University Press, Oxford Hunter R (1993) Introduction to modern colloid science. Oxford University Press, Oxford
47.
Zurück zum Zitat Lyklema J (1995) Fundamentals of interface and colloid science, Solid-liquid interfaces. Elsevier, Amsterdam, p s.1 Lyklema J (1995) Fundamentals of interface and colloid science, Solid-liquid interfaces. Elsevier, Amsterdam, p s.1
48.
Zurück zum Zitat Antonietti M, Vorwerg L (1997) Examination of the atypical electrophoretic mobility behavior of charged colloids in the low salt region using the O’Brian-White theory. Colloid Polym Sci 275(9):883–887CrossRef Antonietti M, Vorwerg L (1997) Examination of the atypical electrophoretic mobility behavior of charged colloids in the low salt region using the O’Brian-White theory. Colloid Polym Sci 275(9):883–887CrossRef
49.
Zurück zum Zitat O’Brien R, White L (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607CrossRef O’Brien R, White L (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607CrossRef
50.
Zurück zum Zitat Mangelsdorf C, White L (1990) Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles. Faraday Trans 86(16):2859CrossRef Mangelsdorf C, White L (1990) Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles. Faraday Trans 86(16):2859CrossRef
51.
Zurück zum Zitat van Wagenen R, Andrade J (1980) Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Colloid Interface Sci 76(2):305–314CrossRef van Wagenen R, Andrade J (1980) Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Colloid Interface Sci 76(2):305–314CrossRef
52.
Zurück zum Zitat Hayes R, Böhmer M, Fokkink L (1999) A study of silica nanoparticle adsorption using optical reflectometry and streaming potential techniques. Langmuir 15(8):2865–2870CrossRef Hayes R, Böhmer M, Fokkink L (1999) A study of silica nanoparticle adsorption using optical reflectometry and streaming potential techniques. Langmuir 15(8):2865–2870CrossRef
53.
Zurück zum Zitat Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York
54.
Zurück zum Zitat Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10(5):415–421CrossRef Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10(5):415–421CrossRef
55.
Zurück zum Zitat McAlister B, Grady B (2002) The use of Monte-Carlo simulations to calculate small-angle scattering patterns. Macromol Symp 190(1):117–130CrossRef McAlister B, Grady B (2002) The use of Monte-Carlo simulations to calculate small-angle scattering patterns. Macromol Symp 190(1):117–130CrossRef
56.
Zurück zum Zitat Blanchet C, Svergun D (2013) Small-angle X-Ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem 64(1):37–54CrossRef Blanchet C, Svergun D (2013) Small-angle X-Ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem 64(1):37–54CrossRef
57.
Zurück zum Zitat Heunemann P, Prévost S, Grillo I, Marino C, Meyer J, Gradzielski M (2011) Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter 7(12):5697CrossRef Heunemann P, Prévost S, Grillo I, Marino C, Meyer J, Gradzielski M (2011) Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter 7(12):5697CrossRef
58.
Zurück zum Zitat Jensen G, Lund R, Gummel J, Monkenbusch M, Narayanan T, Pedersen J (2013) Direct observation of the formation of surfactant micelles under nonisothermal conditions by synchrotron SAXS. J Am Chem Soc 135(19):7214–7222CrossRef Jensen G, Lund R, Gummel J, Monkenbusch M, Narayanan T, Pedersen J (2013) Direct observation of the formation of surfactant micelles under nonisothermal conditions by synchrotron SAXS. J Am Chem Soc 135(19):7214–7222CrossRef
59.
Zurück zum Zitat Milani S, Baldelli Bombelli F, Pitek A, Dawson K, Rädler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541CrossRef Milani S, Baldelli Bombelli F, Pitek A, Dawson K, Rädler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541CrossRef
60.
Zurück zum Zitat Jiang X, Weise S, Hafner M, Rocker C, Zhang F, Parak W, Nienhaus G (2009) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl_1):S5CrossRef Jiang X, Weise S, Hafner M, Rocker C, Zhang F, Parak W, Nienhaus G (2009) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl_1):S5CrossRef
61.
Zurück zum Zitat Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a New tool for accurate and absolute diffusion measurements. Chemphyschem 8(3):433–443CrossRef Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a New tool for accurate and absolute diffusion measurements. Chemphyschem 8(3):433–443CrossRef
62.
Zurück zum Zitat Maffre P, Nienhaus K, Amin F, Parak W, Nienhaus G (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383CrossRef Maffre P, Nienhaus K, Amin F, Parak W, Nienhaus G (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383CrossRef
63.
Zurück zum Zitat Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146CrossRef Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146CrossRef
64.
Zurück zum Zitat Treuel L, Malissek M, Gebauer J, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chemphyschem 11(14):3093–3099CrossRef Treuel L, Malissek M, Gebauer J, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chemphyschem 11(14):3093–3099CrossRef
65.
Zurück zum Zitat Harris J, Roos C, Djalali R, Rheingans O, Maskos M, Schmidt M (1999) Application of the negative staining technique to both aqueous and organic solvent solutions of polymer particles. Micron 30(4):289–298CrossRef Harris J, Roos C, Djalali R, Rheingans O, Maskos M, Schmidt M (1999) Application of the negative staining technique to both aqueous and organic solvent solutions of polymer particles. Micron 30(4):289–298CrossRef
66.
Zurück zum Zitat Feynman R, Leighton R, Sands M, Gottlieb M, Leighton R (2006) The Feynman lectures on physics. Pearson Addison-Wesley, San Francisco Feynman R, Leighton R, Sands M, Gottlieb M, Leighton R (2006) The Feynman lectures on physics. Pearson Addison-Wesley, San Francisco
67.
Zurück zum Zitat Adrian M, Dubochet J, Lepault J, McDowall A (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36CrossRef Adrian M, Dubochet J, Lepault J, McDowall A (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36CrossRef
68.
Zurück zum Zitat Mueller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, Maskos M (2009) Hydrophobic shell loading of PB- b -PEO vesicles. Macromolecules 42(1):357–361CrossRef Mueller W, Koynov K, Fischer K, Hartmann S, Pierrat S, Basché T, Maskos M (2009) Hydrophobic shell loading of PB- b -PEO vesicles. Macromolecules 42(1):357–361CrossRef
69.
Zurück zum Zitat Milne J, Borgnia M, Bartesaghi A, Tran E, Earl L, Schauder D, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280(1):28–45CrossRef Milne J, Borgnia M, Bartesaghi A, Tran E, Earl L, Schauder D, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280(1):28–45CrossRef
70.
Zurück zum Zitat Hamley I, Castelletto V, Fundin J, Yang Z, Crothers M, Attwood D, Talmon Y (2004) Cryo-TEM imaging of block copolymer micelles containing solubilized liquid crystal. Colloid Polym Sci 282(5):514–517CrossRef Hamley I, Castelletto V, Fundin J, Yang Z, Crothers M, Attwood D, Talmon Y (2004) Cryo-TEM imaging of block copolymer micelles containing solubilized liquid crystal. Colloid Polym Sci 282(5):514–517CrossRef
71.
Zurück zum Zitat Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20(15):6085–6088CrossRef Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20(15):6085–6088CrossRef
72.
Zurück zum Zitat Binnig G, Quate C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef Binnig G, Quate C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef
73.
Zurück zum Zitat Magonov S, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(2–3):L385CrossRef Magonov S, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(2–3):L385CrossRef
74.
Zurück zum Zitat Haeberle W, Pantea M, Hoerber J (2006) Nanometer-scale heat-conductivity measurements on biological samples. In: Proceedings of the seventh international conference on scanning probe microscopy, sensors and nanostructures 106(8–9):678–686 Haeberle W, Pantea M, Hoerber J (2006) Nanometer-scale heat-conductivity measurements on biological samples. In: Proceedings of the seventh international conference on scanning probe microscopy, sensors and nanostructures 106(8–9):678–686
75.
Zurück zum Zitat Berger R, Butt H-J, Retschke M, Weber S (2009) Electrical modes in scanning probe microscopy. Macromol Rapid Commun 30(14):1167–1178CrossRef Berger R, Butt H-J, Retschke M, Weber S (2009) Electrical modes in scanning probe microscopy. Macromol Rapid Commun 30(14):1167–1178CrossRef
76.
Zurück zum Zitat Giessibl F (1995) Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267(5194):68–71CrossRef Giessibl F (1995) Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267(5194):68–71CrossRef
77.
Zurück zum Zitat Jarvis S, Sader J, Fukuma T (2008) In: Bhushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods VIII. Springer, Berlin, Heidelberg Jarvis S, Sader J, Fukuma T (2008) In: Bhushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods VIII. Springer, Berlin, Heidelberg
78.
Zurück zum Zitat Gurevich L, Fojan P, Saxena R, Petersen S (2006) Mounting proteins on metal nanoparticles: statistical analysis of AFM images. 2006 NSTI Nanotechnology Conference and Trade Show, Boston, May 7–11, 2006. Nano Science and Technology Institute, Boston Gurevich L, Fojan P, Saxena R, Petersen S (2006) Mounting proteins on metal nanoparticles: statistical analysis of AFM images. 2006 NSTI Nanotechnology Conference and Trade Show, Boston, May 7–11, 2006. Nano Science and Technology Institute, Boston
79.
Zurück zum Zitat MacCuspie R (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908CrossRef MacCuspie R (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908CrossRef
80.
Zurück zum Zitat Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152CrossRef Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152CrossRef
81.
Zurück zum Zitat Pyrgiotakis G, Blattmann C, Pratsinis S, Demokritou P (2013) Nanoparticle–nanoparticle interactions in biological media by atomic force microscopy. Langmuir 29(36):11385–11395CrossRef Pyrgiotakis G, Blattmann C, Pratsinis S, Demokritou P (2013) Nanoparticle–nanoparticle interactions in biological media by atomic force microscopy. Langmuir 29(36):11385–11395CrossRef
82.
Zurück zum Zitat Schaefer J, Schulze C, Marxer E, Schaefer U, Wohlleben W, Bakowsky U, Lehr C-M (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6(6):4603–4614CrossRef Schaefer J, Schulze C, Marxer E, Schaefer U, Wohlleben W, Bakowsky U, Lehr C-M (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6(6):4603–4614CrossRef
83.
Zurück zum Zitat Gildings J (1968) Nonequilibrium theory of field-flow fractionation. J Chem Phys 49(1):81–85CrossRef Gildings J (1968) Nonequilibrium theory of field-flow fractionation. J Chem Phys 49(1):81–85CrossRef
84.
Zurück zum Zitat Giddings J (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113):1456–1465CrossRef Giddings J (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113):1456–1465CrossRef
85.
Zurück zum Zitat Schimpf M, Caldwell K, Giddings J (2000) Field-flow fractionation handbook. Wiley-Interscience, New York, Chichester Schimpf M, Caldwell K, Giddings J (2000) Field-flow fractionation handbook. Wiley-Interscience, New York, Chichester
86.
Zurück zum Zitat Wahlund K, Giddings J (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59(9):1332–1339CrossRef Wahlund K, Giddings J (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59(9):1332–1339CrossRef
87.
Zurück zum Zitat Hovingh M, Thompson G, Giddings J (1970) Column parameters in thermal field-flow fractionation. Anal Chem 42(2):195–203CrossRef Hovingh M, Thompson G, Giddings J (1970) Column parameters in thermal field-flow fractionation. Anal Chem 42(2):195–203CrossRef
88.
Zurück zum Zitat Giddings J (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50(10):667CrossRef Giddings J (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50(10):667CrossRef
89.
Zurück zum Zitat Davis J, Giddings J (1986) Feasibility study of dielectrical field-flow fractionation. Sep Sci Technol 21(9):969–989CrossRef Davis J, Giddings J (1986) Feasibility study of dielectrical field-flow fractionation. Sep Sci Technol 21(9):969–989CrossRef
90.
Zurück zum Zitat Lang T, Eslahian K, Maskos M (2012) Ion effects in field-flow fractionation of aqueous colloidal polystyrene. Macromol Chem Phys 213(22):2353–2361CrossRef Lang T, Eslahian K, Maskos M (2012) Ion effects in field-flow fractionation of aqueous colloidal polystyrene. Macromol Chem Phys 213(22):2353–2361CrossRef
91.
Zurück zum Zitat Andreev V, Stefanovich L (1993) Theory of field-flow fractionation with the reversible adsorption on channel walls. Chromatographia 37(5–6):325–328CrossRef Andreev V, Stefanovich L (1993) Theory of field-flow fractionation with the reversible adsorption on channel walls. Chromatographia 37(5–6):325–328CrossRef
92.
Zurück zum Zitat Gigault J, Le Hécho I, Dubascoux S, Potin-Gautier M, Lespes G (2010) Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering. J Chromatogr A 1217(50):7891–7897CrossRef Gigault J, Le Hécho I, Dubascoux S, Potin-Gautier M, Lespes G (2010) Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering. J Chromatogr A 1217(50):7891–7897CrossRef
93.
Zurück zum Zitat Hagendorfer H, Kaegi R, Traber J, Mertens S, Scherrers R, Ludwig C, Ulrich A (2011) Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization – prospects and limitations demonstrated on Au nanoparticles. Anal Chim Acta 706(2):367–378CrossRef Hagendorfer H, Kaegi R, Traber J, Mertens S, Scherrers R, Ludwig C, Ulrich A (2011) Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization – prospects and limitations demonstrated on Au nanoparticles. Anal Chim Acta 706(2):367–378CrossRef
94.
Zurück zum Zitat Jungmann N, Schmidt M, Maskos M (2001) Characterization of polyorganosiloxane nanoparticles in aqueous dispersion by asymmetrical flow field-flow fractionation. Macromolecules 34(23):8347–8353CrossRef Jungmann N, Schmidt M, Maskos M (2001) Characterization of polyorganosiloxane nanoparticles in aqueous dispersion by asymmetrical flow field-flow fractionation. Macromolecules 34(23):8347–8353CrossRef
95.
Zurück zum Zitat Rambaldi D, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447CrossRef Rambaldi D, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447CrossRef
96.
Zurück zum Zitat Arfvidsson C, Wahlund K-G (2003) Time-minimized determination of ribosome and tRNA levels in bacterial cells using flow field–flow fractionation. Anal Biochem 313(1):76–85CrossRef Arfvidsson C, Wahlund K-G (2003) Time-minimized determination of ribosome and tRNA levels in bacterial cells using flow field–flow fractionation. Anal Biochem 313(1):76–85CrossRef
97.
Zurück zum Zitat Wittgren B, Wahlund K-G, Andersson M, Arfvidsson C (2002) Polysaccharide characterization by flow field-flow fractionation-multiangle light scattering: initial studies of modified starches. Int J Polym Anal Char 7(1–2):19–40CrossRef Wittgren B, Wahlund K-G, Andersson M, Arfvidsson C (2002) Polysaccharide characterization by flow field-flow fractionation-multiangle light scattering: initial studies of modified starches. Int J Polym Anal Char 7(1–2):19–40CrossRef
98.
Zurück zum Zitat Li J, Zhong W (2008) A two-dimensional suspension array system by coupling field flow fractionation to flow cytometry. J Chromatogr A 1183(1–2):143–149CrossRef Li J, Zhong W (2008) A two-dimensional suspension array system by coupling field flow fractionation to flow cytometry. J Chromatogr A 1183(1–2):143–149CrossRef
99.
Zurück zum Zitat Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle–protein interaction via flow field-flow fractionation. Anal Chem 85(15):7494–7501CrossRef Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle–protein interaction via flow field-flow fractionation. Anal Chem 85(15):7494–7501CrossRef
100.
Zurück zum Zitat Runyon J, Goering A, Yong K-T, Williams S (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface Plasmon resonance. Anal Chem 85(2):940–948CrossRef Runyon J, Goering A, Yong K-T, Williams S (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface Plasmon resonance. Anal Chem 85(2):940–948CrossRef
101.
Zurück zum Zitat Rolland-Sabaté A, Mendez-Montealvo M, Colonna P, Planchot V (2008) Online determination of structural properties and observation of deviations from power law behavior. Biomacromolecules 9(7):1719–1730CrossRef Rolland-Sabaté A, Mendez-Montealvo M, Colonna P, Planchot V (2008) Online determination of structural properties and observation of deviations from power law behavior. Biomacromolecules 9(7):1719–1730CrossRef
102.
Zurück zum Zitat Ehrhart J, Mingotaud A-F, Violleau F (2011) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 1218(27):4249–4256CrossRef Ehrhart J, Mingotaud A-F, Violleau F (2011) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 1218(27):4249–4256CrossRef
103.
Zurück zum Zitat Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth J, Bender Koch C, Larsen E (2011) Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem 83(7):2461–2468CrossRef Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth J, Bender Koch C, Larsen E (2011) Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem 83(7):2461–2468CrossRef
104.
Zurück zum Zitat Prestel H, Niessner R, Panne U (2006) Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem 78(18):6664–6669CrossRef Prestel H, Niessner R, Panne U (2006) Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem 78(18):6664–6669CrossRef
105.
Zurück zum Zitat Knappe P, Boehmert L, Bienert R, Karmutzki S, Niemann B, Lampen A, Thünemann A (2011) Processing nanoparticles with A4F-SAXS for toxicological studies: iron oxide in cell-based assays. J Chromatogr A 1218(27):4160–4166CrossRef Knappe P, Boehmert L, Bienert R, Karmutzki S, Niemann B, Lampen A, Thünemann A (2011) Processing nanoparticles with A4F-SAXS for toxicological studies: iron oxide in cell-based assays. J Chromatogr A 1218(27):4160–4166CrossRef
106.
Zurück zum Zitat Maskos M, Schupp W (2003) Circular asymmetrical flow field-flow fractionation for the semipreparative separation of particles. Anal Chem 75(22):6105–6108CrossRef Maskos M, Schupp W (2003) Circular asymmetrical flow field-flow fractionation for the semipreparative separation of particles. Anal Chem 75(22):6105–6108CrossRef
107.
Zurück zum Zitat Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. J Polym Sci B Polym Lett 5(9):753–759CrossRef Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. J Polym Sci B Polym Lett 5(9):753–759CrossRef
108.
Zurück zum Zitat Hagel L, Lundström H, Andersson T, Lindblom H (1989) Properties, in theory and practice, of novel gel filtration media for standard liquid chromatography. J Chromatogr A 476:329–344CrossRef Hagel L, Lundström H, Andersson T, Lindblom H (1989) Properties, in theory and practice, of novel gel filtration media for standard liquid chromatography. J Chromatogr A 476:329–344CrossRef
109.
Zurück zum Zitat Siebrands T, Giersig M, Mulvaney P, Fischer C (1993) Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9(9):2297–2300CrossRef Siebrands T, Giersig M, Mulvaney P, Fischer C (1993) Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9(9):2297–2300CrossRef
110.
Zurück zum Zitat Al-Somali A, Krueger K, Falkner J, Colvin V (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76(19):5903–5910CrossRef Al-Somali A, Krueger K, Falkner J, Colvin V (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76(19):5903–5910CrossRef
111.
Zurück zum Zitat Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123CrossRef Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123CrossRef
112.
Zurück zum Zitat Sperling R, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-A, Chang W, Braun D, Parak W (2007) Size determination of (Bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J Phys Chem C 111(31):11552–11559CrossRef Sperling R, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-A, Chang W, Braun D, Parak W (2007) Size determination of (Bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J Phys Chem C 111(31):11552–11559CrossRef
113.
Zurück zum Zitat Wei G-T, Liu F-K, Wang C (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091CrossRef Wei G-T, Liu F-K, Wang C (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091CrossRef
114.
Zurück zum Zitat Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885CrossRef Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885CrossRef
115.
Zurück zum Zitat Pellegrino T, Sperling R, Alivisatos A, Parak W (2007) Gel electrophoresis of gold-DNA nanoconjugates. J Biomed Biotech 2007 Pellegrino T, Sperling R, Alivisatos A, Parak W (2007) Gel electrophoresis of gold-DNA nanoconjugates. J Biomed Biotech 2007
116.
Zurück zum Zitat Shapiro A, Viñuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28(5):815–820CrossRef Shapiro A, Viñuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28(5):815–820CrossRef
117.
Zurück zum Zitat Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Bio Chem 244(16):4406–4412 Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Bio Chem 244(16):4406–4412
118.
Zurück zum Zitat Planken K, Cölfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2(10):1849CrossRef Planken K, Cölfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2(10):1849CrossRef
119.
Zurück zum Zitat Akbulut O, Mace C, Martinez R, Kumar A, Nie Z, Patton M, Whitesides G (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef Akbulut O, Mace C, Martinez R, Kumar A, Nie Z, Patton M, Whitesides G (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef
120.
Zurück zum Zitat Schachman H (1959) Ultracentrifugation in biochemistry. Academic, New York Schachman H (1959) Ultracentrifugation in biochemistry. Academic, New York
121.
Zurück zum Zitat Liu J, Shire S (1999) Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci 88(12):1237–1241CrossRef Liu J, Shire S (1999) Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci 88(12):1237–1241CrossRef
122.
Zurück zum Zitat Scott D, Harding S, Rowe A (2005) Analytical ultracentrifugation. RSC, CambridgeCrossRef Scott D, Harding S, Rowe A (2005) Analytical ultracentrifugation. RSC, CambridgeCrossRef
123.
Zurück zum Zitat Domingos R, Baalousha M, Ju-Nam Y, Reid M, Tufenkji N, Lead J, Leppard G, Wilkinson K (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43(19):7277–7284CrossRef Domingos R, Baalousha M, Ju-Nam Y, Reid M, Tufenkji N, Lead J, Leppard G, Wilkinson K (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43(19):7277–7284CrossRef
Metadaten
Titel
Characterization of Nanoparticles Under Physiological Conditions
verfasst von
K. A. Eslahian
T. Lang
C. Bantz
R. Keller
R. Sperling
D. Docter
R. Stauber
M. Maskos
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/11663_2014_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.