Skip to main content
Erschienen in: Cellulose 4/2020

09.12.2019 | Original Research

Characterization of size and aggregation for cellulose nanocrystal dispersions separated by asymmetrical-flow field-flow fractionation

verfasst von: Maohui Chen, Jeremie Parot, Arnab Mukherjee, Martin Couillard, Shan Zou, Vincent A. Hackley, Linda J. Johnston

Erschienen in: Cellulose | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanocrystals (CNCs) derived from various types of cellulose biomass have significant potential for applications that take advantage of their availability from renewable natural resources and their high mechanical strength, biocompatibility and ease of modification. However, their high polydispersity and irregular rod-like shape present challenges for the quantitative dimensional determinations that are required for quality control of CNC production processes. Here we have fractionated a CNC certified reference material using a previously reported asymmetrical-flow field-flow fractionation (AF4) method and characterized selected fractions by atomic force microscopy (AFM) and transmission electron microscopy. This work was aimed at addressing discrepancies in length between fractionated and unfractionated CNC and obtaining less polydisperse samples with fewer aggregates to facilitate microscopy dimensional measurements. The results demonstrate that early fractions obtained from an analytical scale AF4 separation contain predominantly individual CNCs. The number of laterally aggregated “dimers” and clusters containing 3 or more particles increases with increasing fraction number. Size analysis of individual particles by AFM for the early fractions demonstrates that the measured CNC length increases with increasing fraction number, in good agreement with the rod length calculated from the AF4 multi-angle light scattering data. The ability to minimize aggregation and polydispersity for CNC samples has important implications for correlating data from different sizing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.
 
Literatur
Zurück zum Zitat Bai W, Holberry J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465CrossRef Bai W, Holberry J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465CrossRef
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenney JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohy Polym 94:154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenney JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohy Polym 94:154–169CrossRef
Zurück zum Zitat Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRef Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRef
Zurück zum Zitat Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602CrossRef Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602CrossRef
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
Zurück zum Zitat Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89 Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89
Zurück zum Zitat Eichhorn S (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRef Eichhorn S (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRef
Zurück zum Zitat Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chen KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679CrossRef Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chen KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679CrossRef
Zurück zum Zitat Gigault J, Cho TJ, MacCuspie RI, Hackley VA (2013) Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV–vis detection. Anal Bioanal Chem 405:1191–1202CrossRef Gigault J, Cho TJ, MacCuspie RI, Hackley VA (2013) Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV–vis detection. Anal Bioanal Chem 405:1191–1202CrossRef
Zurück zum Zitat Guan X, Cueto R, Russo P, Qi Y, Wu Q (2012) Asymmetric flow field-flow fractionation with multiangle light scattering detection for characterization of cellulose nanocrystals. Biomacromol 13:2671–2679CrossRef Guan X, Cueto R, Russo P, Qi Y, Wu Q (2012) Asymmetric flow field-flow fractionation with multiangle light scattering detection for characterization of cellulose nanocrystals. Biomacromol 13:2671–2679CrossRef
Zurück zum Zitat Hamad WY (2014) Development and properties of nanocrystalline cellulose. ACS Symp Ser 1067:301–321CrossRef Hamad WY (2014) Development and properties of nanocrystalline cellulose. ACS Symp Ser 1067:301–321CrossRef
Zurück zum Zitat Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef
Zurück zum Zitat Hiraoki R, Tanaka R, Ono Y, Nakamura M, Isogai T, Saito T, Isogai A (2018) Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis. Cellulose 25:1599–1606CrossRef Hiraoki R, Tanaka R, Ono Y, Nakamura M, Isogai T, Saito T, Isogai A (2018) Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis. Cellulose 25:1599–1606CrossRef
Zurück zum Zitat Hu Y, Abidi N (2016) Distinct nematic self-assembling behavior caused by different size-unified cellulose nanocrystals via a multistage separation. Langmuir 32:9863–9872CrossRef Hu Y, Abidi N (2016) Distinct nematic self-assembling behavior caused by different size-unified cellulose nanocrystals via a multistage separation. Langmuir 32:9863–9872CrossRef
Zurück zum Zitat Jakubek ZJ, Chen M, Couillard M, Leng T, Liu L, Zou S, Baxa U, Clogston JD, Hamad W, Johnston LJ (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res 20:98CrossRef Jakubek ZJ, Chen M, Couillard M, Leng T, Liu L, Zou S, Baxa U, Clogston JD, Hamad W, Johnston LJ (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res 20:98CrossRef
Zurück zum Zitat Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 2015:41719 Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 2015:41719
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRef
Zurück zum Zitat Mazloumi M, Johnston LJ, Jakubek ZJ (2018) Dispersion, stability and size measurements for cellulose nanocrystals by static multiple light scattering. Cellulose 25:5751–5768CrossRef Mazloumi M, Johnston LJ, Jakubek ZJ (2018) Dispersion, stability and size measurements for cellulose nanocrystals by static multiple light scattering. Cellulose 25:5751–5768CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Mukherjee A, Hackley VA (2017) Separation and characterization of cellulose nanocrystals by multi-detector asymmetric flow field-flow fractionation. Analyst 143:731–740CrossRef Mukherjee A, Hackley VA (2017) Separation and characterization of cellulose nanocrystals by multi-detector asymmetric flow field-flow fractionation. Analyst 143:731–740CrossRef
Zurück zum Zitat Patel DK, Duttab SD, Lim K-Y (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 9:19143–19162CrossRef Patel DK, Duttab SD, Lim K-Y (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 9:19143–19162CrossRef
Zurück zum Zitat Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) (2013) Production and applications of cellulose nanomaterials. TAPPI Press, Atlanta Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) (2013) Production and applications of cellulose nanomaterials. TAPPI Press, Atlanta
Zurück zum Zitat Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33CrossRef Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33CrossRef
Zurück zum Zitat Ruiz-Palomero C, Soriano ML, Valcarcel M (2017) Detection of nanocellulose in commercial products and its size characterization using asymmetric flow field-flow fractionation. Microchim Acta 184:1069–1076CrossRef Ruiz-Palomero C, Soriano ML, Valcarcel M (2017) Detection of nanocellulose in commercial products and its size characterization using asymmetric flow field-flow fractionation. Microchim Acta 184:1069–1076CrossRef
Zurück zum Zitat Shatkin JA, Kim B (2015) Cellulose nanomaterials: life cycle risk assessment and environmental health and safety roadmap. Environ Sci Nano 2:477–499CrossRef Shatkin JA, Kim B (2015) Cellulose nanomaterials: life cycle risk assessment and environmental health and safety roadmap. Environ Sci Nano 2:477–499CrossRef
Zurück zum Zitat Shatkin JA, Wegner TH, Bilek EM, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. Tappi J 13:9–16CrossRef Shatkin JA, Wegner TH, Bilek EM, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. Tappi J 13:9–16CrossRef
Zurück zum Zitat Taurozzi JS, Hackley VA, Wiesner MR (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology 5:711–729CrossRef Taurozzi JS, Hackley VA, Wiesner MR (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology 5:711–729CrossRef
Zurück zum Zitat Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625CrossRef Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625CrossRef
Zurück zum Zitat Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRef Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRef
Zurück zum Zitat Uhlig M, Fall A, Wellert S, Lehmann M, Prévost S, Wågberg L, von Klitzing R, Nyström G (2016) Two-dimensional aggregation and semidilute ordering in cellulose nanocrystals. Langmuir 32:442–450CrossRef Uhlig M, Fall A, Wellert S, Lehmann M, Prévost S, Wågberg L, von Klitzing R, Nyström G (2016) Two-dimensional aggregation and semidilute ordering in cellulose nanocrystals. Langmuir 32:442–450CrossRef
Zurück zum Zitat Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701CrossRef Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701CrossRef
Metadaten
Titel
Characterization of size and aggregation for cellulose nanocrystal dispersions separated by asymmetrical-flow field-flow fractionation
verfasst von
Maohui Chen
Jeremie Parot
Arnab Mukherjee
Martin Couillard
Shan Zou
Vincent A. Hackley
Linda J. Johnston
Publikationsdatum
09.12.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02909-9

Weitere Artikel der Ausgabe 4/2020

Cellulose 4/2020 Zur Ausgabe