Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2015 | Original Paper | Ausgabe 1/2015

Rock Mechanics and Rock Engineering 1/2015

Characterization of Strength of Intact Brittle Rock Considering Confinement-Dependent Failure Processes

Zeitschrift:
Rock Mechanics and Rock Engineering > Ausgabe 1/2015
Autoren:
Peter K. Kaiser, Bo-Hyun Kim

Abstract

As technologies for deep underground development such as tunneling underneath mountains or mass mining at great depths (>1,000 m) are implemented, more difficult ground conditions in highly stressed environments are encountered. Moreover, the anticipated stress level at these depths easily exceeds the loading capacity of laboratory testing, so it is difficult to properly characterize what the rock behavior would be under high confinement stress conditions. If rock is expected to fail in a brittle manner, behavior changes associated with the relatively low tensile strength, such as transition from splitting to the shear failure, have to be considered and reflected in the adopted failure criteria. Rock failure in tension takes place at low confinement around excavations due to tensile or extensional failure in heterogeneous rocks. The prospect of tensile-dominant brittle failure diminishes as the confinement increases away from the excavation boundary. Therefore, it must be expected that the transition in the failure mechanism, from tensile to shear, occurs as the confinement level increases and conditions for extensional failure are prevented or strongly diminished. However, conventional failure criteria implicitly consider only the shear failure mechanism (i.e., failure envelopes touching Mohr stress circles), and thus, do not explicitly capture the transition of failure modes from tensile to shear associated with confinement change. This paper examines the methodologies for intact rock strength determination as the basic input data for engineering design of deep excavations. It is demonstrated that published laboratory test data can be reinterpreted and better characterized using an s-shaped failure criterion highlighting the transition of failure modes in brittle failing rock. As a consequence of the bi-modal nature of the failure envelope, intact rock strength data are often misinterpreted. If the intact rock strength is estimated by standard procedures from unconfined compression tests (UCS) alone, the confined strength may be underestimated by as much as 50 % (on average). If triaxial data with a limited confinement range (e.g., σ3 ≪ 0.5 UCS due to cell pressure limitations) are used, the confined strength may be overestimated. Therefore, the application of standard data fitting procedures, without consideration of confinement-dependent failure mechanisms, may lead to erroneous intact rock strength parameters when applied to brittle rocks, and consequently, by extrapolation, to correspondingly erroneous rock mass strength parameters. It follows that the strength characteristics of massive rock differ significantly in the direct vicinity of excavation from that which is remote with higher confinement. Therefore, it is recommended to adopt a differentiated approach to obtain intact rock strength parameters for engineering problems at lower confinement (near excavation; e.g., excavation stability assessment or support design), and at elevated confinement (typically, when the confinement exceeds about 10 % of the UCS) as might be encountered in wide pillar cores.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Rock Mechanics and Rock Engineering 1/2015 Zur Ausgabe