Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2017

13.01.2017

Characterization of Surface Films Formed During Corrosion of a Pipeline Steel in H2S Environments

verfasst von: F. Huang, P. Cheng, Y. Y. Dong, J. Liu, Q. Hu, X. Y. Zhao, Y. Frank Cheng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the surface films formed on an X52 pipeline steel in H2S-containing environments with various pH values and H2S concentrations were characterized by surface analysis techniques and electrochemical impedance spectroscopy. A stoichiometric FeS film is formed during H2S corrosion of the steel. At low pH (e.g., 3.5) and low H2S concentration (e.g., 0.2 mmol/L), the film is primarily crystalline FeS. When the H2S concentration increases to 2 and 20 mmol/L, mackinawite is also formed. At high pH of 5.5 and low H2S concentration of 0.2 mmol/L, the film is amorphous FeS. With the increase in the H2S concentration to 2 and 20 mmol/L, the film changes to crystalline FeS and the mixture of crystalline FeS and mackinawite, respectively. In low-pH solution (pH 3.5), the compact, crystalline FeS is more protective for steel corrosion compared to mackinawite. As the H2S concentration increases, the corrosion is increased. At high pH of 5.5, when the H2S concentration is 0.2 mmol/L, the low corrosivity of the environment causes production of amorphous FeS only. As the H2S concentration is increased, a thick film is generated, reducing somewhat the steel corrosion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2013, 22, p 170–175CrossRef H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2013, 22, p 170–175CrossRef
2.
Zurück zum Zitat T. Hara, H. Asahi, and H. Ogawa, Conditions of Hydrogen-Induced Corrosion Occurrence of X65 Grade Line Pipe Steels in Sour Environments, Corrosion, 2004, 60, p 1113–1121CrossRef T. Hara, H. Asahi, and H. Ogawa, Conditions of Hydrogen-Induced Corrosion Occurrence of X65 Grade Line Pipe Steels in Sour Environments, Corrosion, 2004, 60, p 1113–1121CrossRef
3.
Zurück zum Zitat F. Huang, X.G. Li, J. Liu, Y.M. Qu, and C.W. Du, Effects of Alloying Elements, Microstructure, and Inclusions on Hydrogen Induced Cracking of X120 Pipeline Steel in Wet H2S Sour Environment, Mater. Corros., 2012, 63, p 59–66CrossRef F. Huang, X.G. Li, J. Liu, Y.M. Qu, and C.W. Du, Effects of Alloying Elements, Microstructure, and Inclusions on Hydrogen Induced Cracking of X120 Pipeline Steel in Wet H2S Sour Environment, Mater. Corros., 2012, 63, p 59–66CrossRef
4.
Zurück zum Zitat M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez, J.G. Chacon-Nava, M.A. Neri-Flores, and A. Martinez-Villafane, Effect of Heat Treatment on H2S Corrosion of a Micro-alloyed C-Mn Steel, Corros. Sci., 2009, 51, p 2380–2386CrossRef M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez, J.G. Chacon-Nava, M.A. Neri-Flores, and A. Martinez-Villafane, Effect of Heat Treatment on H2S Corrosion of a Micro-alloyed C-Mn Steel, Corros. Sci., 2009, 51, p 2380–2386CrossRef
5.
Zurück zum Zitat C. Zhang and Y.F. Cheng, Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 2010, 19, p 1284–1289CrossRef C. Zhang and Y.F. Cheng, Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 2010, 19, p 1284–1289CrossRef
6.
Zurück zum Zitat C.S. Zhou, S.Q. Zheng, C.F. Chen, and G.W. Lu, The Effect of the Partial Pressure of H2S on the Permeation of Hydrogen in Low Carbon Pipeline Steel, Corros. Sci., 2013, 67, p 184–192CrossRef C.S. Zhou, S.Q. Zheng, C.F. Chen, and G.W. Lu, The Effect of the Partial Pressure of H2S on the Permeation of Hydrogen in Low Carbon Pipeline Steel, Corros. Sci., 2013, 67, p 184–192CrossRef
7.
Zurück zum Zitat A.J. McEvily and I. Le May, Hydrogen-Assisted Cracking, Mater. Charact., 1991, 26, p 253–268CrossRef A.J. McEvily and I. Le May, Hydrogen-Assisted Cracking, Mater. Charact., 1991, 26, p 253–268CrossRef
8.
Zurück zum Zitat R.A. Carneiro, R.C. Ratnapuli, and V.F.C. Lins, The Influence of Chemical Composition and Microstructure of API, Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mater. Sci. Eng. A, 2003, 357, p 104–110CrossRef R.A. Carneiro, R.C. Ratnapuli, and V.F.C. Lins, The Influence of Chemical Composition and Microstructure of API, Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mater. Sci. Eng. A, 2003, 357, p 104–110CrossRef
9.
Zurück zum Zitat A. Kawashima, K. Hashimoto, and S. Shimoaira, Hydrogen Electrode Reaction and Hydrogen Embrittlement of Mild Steel in Hydrogen Sulfide Solutions, Corrosion, 1976, 32, p 321–331CrossRef A. Kawashima, K. Hashimoto, and S. Shimoaira, Hydrogen Electrode Reaction and Hydrogen Embrittlement of Mild Steel in Hydrogen Sulfide Solutions, Corrosion, 1976, 32, p 321–331CrossRef
10.
Zurück zum Zitat A.H.S. Bueno, E.D. Moreira, P. Siqueira, and J.A.C.P. Gomes, Effect of Cathodic Potential on Hydrogen Permeation of API, Grade Steels in Modified NS4 Solution, Mater. Sci. Eng. A, 2014, 597, p 117–121CrossRef A.H.S. Bueno, E.D. Moreira, P. Siqueira, and J.A.C.P. Gomes, Effect of Cathodic Potential on Hydrogen Permeation of API, Grade Steels in Modified NS4 Solution, Mater. Sci. Eng. A, 2014, 597, p 117–121CrossRef
11.
Zurück zum Zitat F. Huang, X.G. Li, J. Liu, Y.M. Qu, J. Jia, and C.W. Du, Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of Different Microstructure X80 Pipeline Steel, J. Mater. Sci., 2011, 46, p 715–722CrossRef F. Huang, X.G. Li, J. Liu, Y.M. Qu, J. Jia, and C.W. Du, Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of Different Microstructure X80 Pipeline Steel, J. Mater. Sci., 2011, 46, p 715–722CrossRef
12.
Zurück zum Zitat F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 52, p 6997–7001CrossRef F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 52, p 6997–7001CrossRef
13.
Zurück zum Zitat S.J. Kim, J.H. Park, and K.Y. Kim, Effect of Microstructure on Sulfide Scale Formation and Corrosion Behavior of Pressure Vessel Steel in Sour Environment, Mater. Charact., 2016, 111, p 14–20CrossRef S.J. Kim, J.H. Park, and K.Y. Kim, Effect of Microstructure on Sulfide Scale Formation and Corrosion Behavior of Pressure Vessel Steel in Sour Environment, Mater. Charact., 2016, 111, p 14–20CrossRef
14.
Zurück zum Zitat H. Castaneda, E. Sosa, and M.A. Espinosa-Medina, Film Properties and Stability Influence on Impedance Distribution During the Dissolution Process of Low-Carbon Steel Exposed to Modified Alkaline Sour Environment, Corros. Sci., 2009, 51, p 799–806CrossRef H. Castaneda, E. Sosa, and M.A. Espinosa-Medina, Film Properties and Stability Influence on Impedance Distribution During the Dissolution Process of Low-Carbon Steel Exposed to Modified Alkaline Sour Environment, Corros. Sci., 2009, 51, p 799–806CrossRef
15.
Zurück zum Zitat D.W. Shoesmith, P. Taylor, M.G. Bailey, and D.G.O. Wen, The Formation of Ferrous Monosulfide Polymorphs During the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21-Degrees-C, J. Electrochem. Soc., 1980, 127, p 1007–1015CrossRef D.W. Shoesmith, P. Taylor, M.G. Bailey, and D.G.O. Wen, The Formation of Ferrous Monosulfide Polymorphs During the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21-Degrees-C, J. Electrochem. Soc., 1980, 127, p 1007–1015CrossRef
16.
Zurück zum Zitat J. Ning, Y. Zheng, D. Young, B. Brown, and S. Nesic, Thermodynamic Study of Hydrogen Sulfide Corrosion of Mild Steel, Corrosion, 2014, 70, p 375–389CrossRef J. Ning, Y. Zheng, D. Young, B. Brown, and S. Nesic, Thermodynamic Study of Hydrogen Sulfide Corrosion of Mild Steel, Corrosion, 2014, 70, p 375–389CrossRef
17.
Zurück zum Zitat D.R. Morris, L.P. Sampaleanu, and D.N. Veysey, The Corrosion of Steel by Aqueous Solutions of Hydrogen Sulfide, J. Electrochem. Soc., 1980, 127, p 122–135CrossRef D.R. Morris, L.P. Sampaleanu, and D.N. Veysey, The Corrosion of Steel by Aqueous Solutions of Hydrogen Sulfide, J. Electrochem. Soc., 1980, 127, p 122–135CrossRef
18.
Zurück zum Zitat Z.A. Iofa, V.V. Batrakov, and Cho-Ngok-Ba, Influence of Anion Adsorption on the Action of Inhibitors on the Acid Corrosion of Iron and Cobalt, Electrochim. Acta, 1964, 9, p 1645–1653CrossRef Z.A. Iofa, V.V. Batrakov, and Cho-Ngok-Ba, Influence of Anion Adsorption on the Action of Inhibitors on the Acid Corrosion of Iron and Cobalt, Electrochim. Acta, 1964, 9, p 1645–1653CrossRef
19.
Zurück zum Zitat W. Sun and S. Nesic, A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel, Corrosion, 2009, 65, p 291–307CrossRef W. Sun and S. Nesic, A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel, Corrosion, 2009, 65, p 291–307CrossRef
20.
Zurück zum Zitat X.L. Cheng, H.Y. Ma, J.P. Zhang, X. Chen, S.H. Chen, and H.Q. Yang, Corrosion of Iron in Acid Solutions With hydrogen Sulfide, Corrosion, 1998, 54, p 369–376CrossRef X.L. Cheng, H.Y. Ma, J.P. Zhang, X. Chen, S.H. Chen, and H.Q. Yang, Corrosion of Iron in Acid Solutions With hydrogen Sulfide, Corrosion, 1998, 54, p 369–376CrossRef
21.
Zurück zum Zitat C.F. Dong, K. Xiao, X.G. Li, and Y.F. Cheng, Galvanic Corrosion of a Carbon Steel-Stainless Steel Couple in Sulfide Solutions, J. Mater. Eng. Perform., 2011, 20, p 1631–1637CrossRef C.F. Dong, K. Xiao, X.G. Li, and Y.F. Cheng, Galvanic Corrosion of a Carbon Steel-Stainless Steel Couple in Sulfide Solutions, J. Mater. Eng. Perform., 2011, 20, p 1631–1637CrossRef
22.
Zurück zum Zitat Z.F. Yin, W.Z. Zhao, Z.Q. Bai, Y.R. Feng, and W.J. Zhou, Corrosion Behavior of SM 80SS Tube Steel in Stimulant Solution Containing H2S and CO2, Electrochim. Acta, 2008, 53, p 3690–3700CrossRef Z.F. Yin, W.Z. Zhao, Z.Q. Bai, Y.R. Feng, and W.J. Zhou, Corrosion Behavior of SM 80SS Tube Steel in Stimulant Solution Containing H2S and CO2, Electrochim. Acta, 2008, 53, p 3690–3700CrossRef
23.
Zurück zum Zitat S. Arzola, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, Electrochemical Behavior of API, X70 Steel in Hydrogen Sulfide-Containing Solutions, Corrosion, 2006, 62, p 433–443CrossRef S. Arzola, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, Electrochemical Behavior of API, X70 Steel in Hydrogen Sulfide-Containing Solutions, Corrosion, 2006, 62, p 433–443CrossRef
24.
Zurück zum Zitat H. Vedage, T.A. Ramanarayanan, J.D. Munford, and S.N. Smith, Electrochemical Growth of Iron Sulfide Films in H2S-Saturated Chloride Media, Corrosion, 1993, 49, p 114–121CrossRef H. Vedage, T.A. Ramanarayanan, J.D. Munford, and S.N. Smith, Electrochemical Growth of Iron Sulfide Films in H2S-Saturated Chloride Media, Corrosion, 1993, 49, p 114–121CrossRef
25.
Zurück zum Zitat H. Her-Hsiung, T. Wen-Ta, and L. Ju-Tung, Electrochemical Behavior of the Simulated Heat-Affected Zone of A516 Carbon Steel in H2S Solution, Electrochim. Acta, 1996, 41, p 1191–1199CrossRef H. Her-Hsiung, T. Wen-Ta, and L. Ju-Tung, Electrochemical Behavior of the Simulated Heat-Affected Zone of A516 Carbon Steel in H2S Solution, Electrochim. Acta, 1996, 41, p 1191–1199CrossRef
26.
Zurück zum Zitat T.A. Ramanarayanan and S.N. Smith, Corrosion of Iron in Gaseous Environments and in Gas-Saturated Aqueous Environments, Corrosion, 1990, 46, p 66–74CrossRef T.A. Ramanarayanan and S.N. Smith, Corrosion of Iron in Gaseous Environments and in Gas-Saturated Aqueous Environments, Corrosion, 1990, 46, p 66–74CrossRef
27.
Zurück zum Zitat N. Sridhar, D.S. Dunn, A.M. Anderko, M.M. Lencka, and H.U. Schutt, Effects of Water and Gas Compositions on the Internal Corrosion of Gas Pipelines—Modeling and Experimental Studies, Corrosion, 2001, 57, p 221–235CrossRef N. Sridhar, D.S. Dunn, A.M. Anderko, M.M. Lencka, and H.U. Schutt, Effects of Water and Gas Compositions on the Internal Corrosion of Gas Pipelines—Modeling and Experimental Studies, Corrosion, 2001, 57, p 221–235CrossRef
28.
Zurück zum Zitat Y. Dong, F. Huang, J.J. Wang, H.J. Cheng, and Y. Wang, Evolution of Corrosion Films on X52 Pipeline Steel in Saturated H2S-Cl− Solution, Corros. Prot., 2015, 36, p 1–6 Y. Dong, F. Huang, J.J. Wang, H.J. Cheng, and Y. Wang, Evolution of Corrosion Films on X52 Pipeline Steel in Saturated H2S-Cl Solution, Corros. Prot., 2015, 36, p 1–6
29.
Zurück zum Zitat M.A. Veloz and I. González, Electrochemical Study of Carbon Steel Corrosion in Buffered Acetic Acid Solutions with Chlorides and H2S, Electrochim. Acta, 2002, 48, p 135–144CrossRef M.A. Veloz and I. González, Electrochemical Study of Carbon Steel Corrosion in Buffered Acetic Acid Solutions with Chlorides and H2S, Electrochim. Acta, 2002, 48, p 135–144CrossRef
30.
Zurück zum Zitat A. Davoodi, M. Pakshir, M. Babaiee, and G.R. Ebrahimi, A Comparative H2S Corrosion Study of 304L and 316L Stainless Steels in Acidic Media, Corros. Sci., 2011, 53, p 399–408CrossRef A. Davoodi, M. Pakshir, M. Babaiee, and G.R. Ebrahimi, A Comparative H2S Corrosion Study of 304L and 316L Stainless Steels in Acidic Media, Corros. Sci., 2011, 53, p 399–408CrossRef
31.
Zurück zum Zitat H. Ma, X.L. Cheng, G.Q. Li, S.H. Chen, Z.L. Quan, S.Y. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42, p 1669–1683CrossRef H. Ma, X.L. Cheng, G.Q. Li, S.H. Chen, Z.L. Quan, S.Y. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42, p 1669–1683CrossRef
32.
Zurück zum Zitat Z.F. Yin, W.Z. Zhao, W.Y. Lai, and X.H. Zhao, Electrochemical Behaviour of Ni-Base Alloys Exposed Under Oil/Gas Field Environments, Corros. Sci., 2009, 51, p 1702–1706CrossRef Z.F. Yin, W.Z. Zhao, W.Y. Lai, and X.H. Zhao, Electrochemical Behaviour of Ni-Base Alloys Exposed Under Oil/Gas Field Environments, Corros. Sci., 2009, 51, p 1702–1706CrossRef
33.
Zurück zum Zitat M.B. McNeil and B.J. Little, Technical Note: Mackinawite Formation During Microbial Corrosion, Corrosion, 1990, 46, p 599–600CrossRef M.B. McNeil and B.J. Little, Technical Note: Mackinawite Formation During Microbial Corrosion, Corrosion, 1990, 46, p 599–600CrossRef
34.
Zurück zum Zitat K.J. Wu, H.Y. Ma, S.H. Chen, Z.Y. Xu, and A.F. Sui, General Equivalent Circuits for Faradaic Electrode Processes Under Electrochemical Reaction Control, J. Electrochem. Soc., 1999, 146, p 1847–1856CrossRef K.J. Wu, H.Y. Ma, S.H. Chen, Z.Y. Xu, and A.F. Sui, General Equivalent Circuits for Faradaic Electrode Processes Under Electrochemical Reaction Control, J. Electrochem. Soc., 1999, 146, p 1847–1856CrossRef
Metadaten
Titel
Characterization of Surface Films Formed During Corrosion of a Pipeline Steel in H2S Environments
verfasst von
F. Huang
P. Cheng
Y. Y. Dong
J. Liu
Q. Hu
X. Y. Zhao
Y. Frank Cheng
Publikationsdatum
13.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2510-4

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Engineering and Performance 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.