Skip to main content
Erschienen in:

03.04.2024 | Original Research

Characterization of tropical forests at community level: combining spectral, phenological, structural datasets using random forest algorithm

verfasst von: Jayant Singhal, Ankur Rajwadi, Guljar Malek, Padamnabhi S. Nagar, G. Rajashekar, C. Sudhakar Reddy, S. K. Srivastav

Erschienen in: Biodiversity and Conservation | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the inception of satellite remote sensing as a technology, characterization of forests has been one of its major applications. Characterization of forests at community level is essential for conservation, restoration and sustainable management of biodiversity. Recent advances in remote sensing offer opportunities to observe not only the reflectance spectra of forests from space, but also their phenology and structure. In this study, Earth Observation (EO) datasets were divided into 3 sets: spectral, structural and phenological. Then, Random Forest (RF) algorithm was applied on these 3 datasets along with field inventory-based tree data to generate community classification map of Purna wildlife sanctuary in Gujarat, India. The classification accuracy achieved from the spectral datasets (79.08–87.23%) was better than the phenological dataset (80.94%); and the latter in turn was better than the structural datasets (74.11–81.49%). An RF model with combination of the best predictors from the three datasets increased the classification accuracy upto 90.29%. In case of spectral dataset, the last image before the start of summer monsoon season gave the best accuracy. Also the new spectral bands which first became available in relatively newer satellites contributed significantly more to the model as compared to relatively older spectral bands which have been available in remote sensing satellites for quite some time. Overall, this study develops an empirical framework for mapping tropical tree communities by improving accuracy across the readily available remote sensing datasets and can be upscaled with sufficient field inventory data to generate a national level forest tree community map in India.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ayushi K, Babu KN, Reddy CS, Mayamanikandan T, Barathan N, Debabrata B, Ayyappan N (2022) Remote sensing based characterisation of community level phenological variations in a regional forest landscape of western ghats, India. Geocarto Int 37(27): 16620–16635. https://doi.org/10.1080/10106049.2022.2112304 Ayushi K, Babu KN, Reddy CS, Mayamanikandan T, Barathan N, Debabrata B, Ayyappan N (2022) Remote sensing based characterisation of community level phenological variations in a regional forest landscape of western ghats, India. Geocarto Int 37(27): 16620–16635. https://​doi.​org/​10.​1080/​10106049.​2022.​2112304
Zurück zum Zitat Behera MD, Barnwal S, Paramanik S, Das P, Bhattyacharya BK, Jagadish B, Roy PS, Ghosh SM, Behera SK (2021) Species-level classification and mapping of a Mangrove Forest using Random Forest — Utilisation of AVIRIS-NG and Sentinel Data. Remote Sens 13(May). https://doi.org/10.3390/rs13112027 Behera MD, Barnwal S, Paramanik S, Das P, Bhattyacharya BK, Jagadish B, Roy PS, Ghosh SM, Behera SK (2021) Species-level classification and mapping of a Mangrove Forest using Random Forest — Utilisation of AVIRIS-NG and Sentinel Data. Remote Sens 13(May). https://​doi.​org/​10.​3390/​rs13112027
Zurück zum Zitat Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, Sun R, Lan G, Xie G, Clinton N, Giri C (2017) A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J Photogrammetry Remote Sens 131:104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011CrossRef Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, Sun R, Lan G, Xie G, Clinton N, Giri C (2017) A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J Photogrammetry Remote Sens 131:104–120. https://​doi.​org/​10.​1016/​j.​isprsjprs.​2017.​07.​011CrossRef
Zurück zum Zitat Curtis JT, McIntosh RP (1951) An Upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRef Curtis JT, McIntosh RP (1951) An Upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRef
Zurück zum Zitat Grabska E, Frantz D, Ostapowicz K (2020) Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sensing of Environment, 251(December 2019), 112103. https://doi.org/10.1016/j.rse.2020.112103 Grabska E, Frantz D, Ostapowicz K (2020) Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sensing of Environment, 251(December 2019), 112103. https://​doi.​org/​10.​1016/​j.​rse.​2020.​112103
Zurück zum Zitat http://www.rainfor.org/ Accessed on 12th January 2019 http://www.rainfor.org/ Accessed on 12th January 2019
Zurück zum Zitat Jha CS, Rakesh, Singhal J, Reddy CS, Rajashekar G, Maity S, Patnaik C, Das A, Misra A, Singh CP, Mohapatra J, Krishnayya NSR, Kiran S, Townsend P, Martinez MH (2019) Characterization of species diversity and forest health using AVIRIS-NG hyperspectral remote sensing data. Curr Sci 116(7):1124–1135. https://doi.org/10.18520/cs/v116/i7/1124-1135CrossRef Jha CS, Rakesh, Singhal J, Reddy CS, Rajashekar G, Maity S, Patnaik C, Das A, Misra A, Singh CP, Mohapatra J, Krishnayya NSR, Kiran S, Townsend P, Martinez MH (2019) Characterization of species diversity and forest health using AVIRIS-NG hyperspectral remote sensing data. Curr Sci 116(7):1124–1135. https://​doi.​org/​10.​18520/​cs/​v116/​i7/​1124-1135CrossRef
Zurück zum Zitat Kumar V, Tiwari A, Desai BS (2018) Pattern of floristics and biodiversity of angiosperms of Purna Wildlife Sanctuary, Mahal, Gujarat. Indian J Ecol 45(2):260–265 Kumar V, Tiwari A, Desai BS (2018) Pattern of floristics and biodiversity of angiosperms of Purna Wildlife Sanctuary, Mahal, Gujarat. Indian J Ecol 45(2):260–265
Zurück zum Zitat Marselis S, Mariëlle, Tang H, Armston J, Abernethy K, Alonso A, Barbier N, Bissiengou P, Jeffery K, Kenfack D, Labri re N, Lee SK, Lewis SL, Memiaghe H, Poulsen JR, White L, Dubayah R (2019) Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ Res Lett 14(9). https://doi.org/10.1088/1748-9326/ab2dcd Marselis S, Mariëlle, Tang H, Armston J, Abernethy K, Alonso A, Barbier N, Bissiengou P, Jeffery K, Kenfack D, Labri re N, Lee SK, Lewis SL, Memiaghe H, Poulsen JR, White L, Dubayah R (2019) Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ Res Lett 14(9). https://​doi.​org/​10.​1088/​1748-9326/​ab2dcd
Zurück zum Zitat Marselis, Suzanne M, Abernethy K, Alonso A, Armston J, Baker TR, Bastin JF, Bogaert J, Boyd DS, Boeckx P, Burslem DFRP, Chazdon R, Clark DB, Coomes D, Duncanson L, Hancock S, Hill R, Hopkinson C, Kearsley E, Kellner JR, Dubayah R (2020) Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Glob Ecol Biogeogr 29(10):1799–1816. https://doi.org/10.1111/geb.13158CrossRef Marselis, Suzanne M, Abernethy K, Alonso A, Armston J, Baker TR, Bastin JF, Bogaert J, Boyd DS, Boeckx P, Burslem DFRP, Chazdon R, Clark DB, Coomes D, Duncanson L, Hancock S, Hill R, Hopkinson C, Kearsley E, Kellner JR, Dubayah R (2020) Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Glob Ecol Biogeogr 29(10):1799–1816. https://​doi.​org/​10.​1111/​geb.​13158CrossRef
Zurück zum Zitat Pardini M, Armston J, Qi W, Lee SK, Tello M, Cazcarra Bes V, Choi C, Papathanassiou KP, Dubayah RO, Fatoyinbo LE (2019) Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. In Surveys in Geophysics (Vol. 40, Issue 4). Springer Netherlands. https://doi.org/10.1007/s10712-019-09553-9 Pardini M, Armston J, Qi W, Lee SK, Tello M, Cazcarra Bes V, Choi C, Papathanassiou KP, Dubayah RO, Fatoyinbo LE (2019) Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. In Surveys in Geophysics (Vol. 40, Issue 4). Springer Netherlands. https://​doi.​org/​10.​1007/​s10712-019-09553-9
Zurück zum Zitat Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens Environ 253(August):112165. https://doi.org/10.1016/j.rse.2020.112165CrossRef Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens Environ 253(August):112165. https://​doi.​org/​10.​1016/​j.​rse.​2020.​112165CrossRef
Zurück zum Zitat Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S, Pujar G, Dutt CBS, Srivastava VK, Porwal MC, Tripathi P, Singh JS, Chitale V, Skidmore AK, Ramachandran RM (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://doi.org/10.1016/j.jag.2015.03.003CrossRef Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S, Pujar G, Dutt CBS, Srivastava VK, Porwal MC, Tripathi P, Singh JS, Chitale V, Skidmore AK, Ramachandran RM (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://​doi.​org/​10.​1016/​j.​jag.​2015.​03.​003CrossRef
Metadaten
Titel
Characterization of tropical forests at community level: combining spectral, phenological, structural datasets using random forest algorithm
verfasst von
Jayant Singhal
Ankur Rajwadi
Guljar Malek
Padamnabhi S. Nagar
G. Rajashekar
C. Sudhakar Reddy
S. K. Srivastav
Publikationsdatum
03.04.2024
Verlag
Springer Netherlands
Erschienen in
Biodiversity and Conservation / Ausgabe 12/2024
Print ISSN: 0960-3115
Elektronische ISSN: 1572-9710
DOI
https://doi.org/10.1007/s10531-024-02835-8