Skip to main content
Erschienen in: Cellulose 5/2016

18.08.2016 | Original Paper

Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration

verfasst von: Mahdi Naseri Nosar, Majid Salehi, Sadegh Ghorbani, Shahram Pour Beiranvand, Arash Goodarzi, Mahmoud Azami

Erschienen in: Cellulose | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As skin defects cannot regenerate by themselves, tissue engineering through tissue-mimicking scaffolds holds promise for treating such defects. In this study, cellulose acetate (CA)-based three-dimensional scaffolds were produced using the wet-electrospinning technique, and the influence of concentrations on the properties of the wet-electrospun scaffolds was investigated for the first time. CA with concentrations of 4, 5, 6, 7, 8, 9, 10, 12 and 14 % (w/v) were dissolved in acetone to fabricate the scaffolds. Wet electrospinning was carried out under an applied voltage of 15 kV and a tip-to-bath distance of 10 cm into the aqueous solution of sodium hydroxide (NaOH) (pH ~13) as a coagulation bath. The specimens with concentrations of 4–7 % (w/v) just produced droplets. The concentration of 8 % (w/v) produced beaded fibers, and the fibers of 9, 10, 12 and 14 % (w/v) were almost oriented in a random, dispersive manner and formed a non-woven structure morphology under scanning electron microscope (SEM) observation. The porosity measurement via the liquid displacement method showed that all scaffolds could not meet the accepted ideal porosity percentage of above 80 %, and the highest recorded porosity percentage was 69.5 % for the 12 % (w/v) scaffold. The contact angle measurement data displayed the high hydrophobicity of all scaffolds, which was expected because of the hydrophobic nature of CA. In vitro L929 mouse fibroblast cell culture demonstrated that all scaffolds presented a non-toxic environment and enhanced cell proliferation and attachment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140 Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140
Zurück zum Zitat Ali AA, Al-Asmari AK (2012) Wet-electrospun CuNP/carbon nanofibril composites: potential application for micro surface-mounted components. Appl Nanosci 2(1):55–61CrossRef Ali AA, Al-Asmari AK (2012) Wet-electrospun CuNP/carbon nanofibril composites: potential application for micro surface-mounted components. Appl Nanosci 2(1):55–61CrossRef
Zurück zum Zitat Atila D, Keskin D, Tezcaner A (2015) Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym 133:251–261CrossRef Atila D, Keskin D, Tezcaner A (2015) Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym 133:251–261CrossRef
Zurück zum Zitat Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460CrossRef Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460CrossRef
Zurück zum Zitat Cao L, Price TP, Weiss M, Gao D (2008) Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24(5):1640–1643CrossRef Cao L, Price TP, Weiss M, Gao D (2008) Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24(5):1640–1643CrossRef
Zurück zum Zitat Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y et al (2013) Electrospun poly (l-lactide)/Poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One 8(8):e71265CrossRef Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y et al (2013) Electrospun poly (l-lactide)/Poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One 8(8):e71265CrossRef
Zurück zum Zitat Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167(2):283–293CrossRef Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167(2):283–293CrossRef
Zurück zum Zitat Cipitria A, Skelton A, Dargaville T, Dalton P, Hutmacher D (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21(26):9419–9453CrossRef Cipitria A, Skelton A, Dargaville T, Dalton P, Hutmacher D (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21(26):9419–9453CrossRef
Zurück zum Zitat De Bartolo L, Morelli S, Bader A, Drioli E (2002) Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23(12):2485–2497CrossRef De Bartolo L, Morelli S, Bader A, Drioli E (2002) Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23(12):2485–2497CrossRef
Zurück zum Zitat Deitzel J, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef Deitzel J, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef
Zurück zum Zitat Edlund U, Sauter T, Albertsson AC (2011) Covalent VEGF protein immobilization on resorbable polymeric surfaces. Polym Adv Technol 22(1):166–171CrossRef Edlund U, Sauter T, Albertsson AC (2011) Covalent VEGF protein immobilization on resorbable polymeric surfaces. Polym Adv Technol 22(1):166–171CrossRef
Zurück zum Zitat Entcheva E, Bien H, Yin L, Chung C-Y, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25(26):5753–5762CrossRef Entcheva E, Bien H, Yin L, Chung C-Y, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25(26):5753–5762CrossRef
Zurück zum Zitat Farooque AM, Al-Amoudi A, Numata K (1999) Degradation study of cellulose triacetate hollow fine-fiber SWRO membranes. Desalination 123(2):165–171CrossRef Farooque AM, Al-Amoudi A, Numata K (1999) Degradation study of cellulose triacetate hollow fine-fiber SWRO membranes. Desalination 123(2):165–171CrossRef
Zurück zum Zitat Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391CrossRef Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391CrossRef
Zurück zum Zitat Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 33(3):1228–1235CrossRef Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 33(3):1228–1235CrossRef
Zurück zum Zitat Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539CrossRef Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539CrossRef
Zurück zum Zitat Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomed Nanotechnol Biol Med 2(1):37–41CrossRef Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomed Nanotechnol Biol Med 2(1):37–41CrossRef
Zurück zum Zitat Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24):2998–3001CrossRef Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24):2998–3001CrossRef
Zurück zum Zitat Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4):759–762CrossRef Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4):759–762CrossRef
Zurück zum Zitat Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC et al (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A 78(1):157–167CrossRef Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC et al (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A 78(1):157–167CrossRef
Zurück zum Zitat Hsieh Y-L (1995) Liquid transport in fabric structures. Text Res J 65(5):299–307CrossRef Hsieh Y-L (1995) Liquid transport in fabric structures. Text Res J 65(5):299–307CrossRef
Zurück zum Zitat Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef
Zurück zum Zitat Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys 39(21):2598–2606CrossRef Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys 39(21):2598–2606CrossRef
Zurück zum Zitat Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129CrossRef
Zurück zum Zitat Loss M, Wedler V, Künzi W, Meuli-Simmen C, Meyer V (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93 % of TBSA. Burns 26(7):644–652CrossRef Loss M, Wedler V, Künzi W, Meuli-Simmen C, Meyer V (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93 % of TBSA. Burns 26(7):644–652CrossRef
Zurück zum Zitat Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427CrossRef Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427CrossRef
Zurück zum Zitat Ma PX, Elisseeff J (2005) Scaffolding in tissue engineering. CRC Press, Boca RatonCrossRef Ma PX, Elisseeff J (2005) Scaffolding in tissue engineering. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Märtson M, Viljanto J, Hurme T, Saukko P (1998) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30(6):426–432CrossRef Märtson M, Viljanto J, Hurme T, Saukko P (1998) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30(6):426–432CrossRef
Zurück zum Zitat Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995CrossRef Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995CrossRef
Zurück zum Zitat Moroni L, De Wijn J, Van Blitterswijk C (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–985CrossRef Moroni L, De Wijn J, Van Blitterswijk C (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–985CrossRef
Zurück zum Zitat Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef
Zurück zum Zitat Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165CrossRef Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165CrossRef
Zurück zum Zitat Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19(5):1583–1598CrossRef Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19(5):1583–1598CrossRef
Zurück zum Zitat Salehi M, Naseri Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H (2015) Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater 64(13):675–682CrossRef Salehi M, Naseri Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H (2015) Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater 64(13):675–682CrossRef
Zurück zum Zitat Schakenraad J, Busscher H, Wildevuur CR, Arends J (1986) The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res 20(6):773–784CrossRef Schakenraad J, Busscher H, Wildevuur CR, Arends J (1986) The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res 20(6):773–784CrossRef
Zurück zum Zitat Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys 42(1):5–11CrossRef Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys 42(1):5–11CrossRef
Zurück zum Zitat Spivak AF, Dzenis YA, Reneker DH (2000) A model of steady state jet in the electrospinning process. Mech Res Commun 27(1):37–42CrossRef Spivak AF, Dzenis YA, Reneker DH (2000) A model of steady state jet in the electrospinning process. Mech Res Commun 27(1):37–42CrossRef
Zurück zum Zitat Srinivasan S, Jayasree R, Chennazhi K, Nair S, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283CrossRef Srinivasan S, Jayasree R, Chennazhi K, Nair S, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283CrossRef
Zurück zum Zitat Tsioptsias C, Sakellariou KG, Tsivintzelis I, Papadopoulou L, Panayiotou C (2010) Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydr Polym 81(4):925–930CrossRef Tsioptsias C, Sakellariou KG, Tsivintzelis I, Papadopoulou L, Panayiotou C (2010) Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydr Polym 81(4):925–930CrossRef
Zurück zum Zitat Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S et al (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRef Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S et al (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRef
Zurück zum Zitat Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921CrossRef Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921CrossRef
Zurück zum Zitat Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53(9):1466–1467CrossRef Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53(9):1466–1467CrossRef
Zurück zum Zitat Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900CrossRef Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900CrossRef
Zurück zum Zitat Yang W, Yang F, Wang Y, Both SK, Jansen JA (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):4505–4512CrossRef Yang W, Yang F, Wang Y, Both SK, Jansen JA (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):4505–4512CrossRef
Zurück zum Zitat Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T et al (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63(9–10):754–756CrossRef Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T et al (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63(9–10):754–756CrossRef
Metadaten
Titel
Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration
verfasst von
Mahdi Naseri Nosar
Majid Salehi
Sadegh Ghorbani
Shahram Pour Beiranvand
Arash Goodarzi
Mahmoud Azami
Publikationsdatum
18.08.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1026-7

Weitere Artikel der Ausgabe 5/2016

Cellulose 5/2016 Zur Ausgabe