Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Characterization Techniques

verfasst von : Guohua Liu

Erschienen in: Thermoplasmonics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ability to accurately measure localized temperature variations is essential for comprehending the fundamental aspects of thermoplasmonics. This calls for nanothermometry that possesses high spatial, temporal, and thermal resolutions. Yet, the sensitivity of many current techniques is compromised by systematic errors, which can arise from fluctuations in fluorescence, variations in local environmental conditions, or changes in the optical properties of the surrounding medium. Therefore, it is crucial to combine analytical models, numerical simulations, and experimental methods to achieve a complement understanding of thermoplasmonics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.B. Wang, B.S. Luk’yanchuk, M.H. Hong, Y. Lin, T.C. Chong, Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70 (2004) Z.B. Wang, B.S. Luk’yanchuk, M.H. Hong, Y. Lin, T.C. Chong, Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70 (2004)
2.
Zurück zum Zitat R. Yu, L.M. Liz-Marzan, F.J. Garcia de Abajo, Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017)PubMedCrossRef R. Yu, L.M. Liz-Marzan, F.J. Garcia de Abajo, Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017)PubMedCrossRef
3.
Zurück zum Zitat M.C. Wang, E. Guth, On the theory of multiple scattering, particularly of charged particles. Phys. Rev. 84, 1092–1111 (1951)CrossRef M.C. Wang, E. Guth, On the theory of multiple scattering, particularly of charged particles. Phys. Rev. 84, 1092–1111 (1951)CrossRef
4.
Zurück zum Zitat C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013)PubMedCrossRef C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013)PubMedCrossRef
5.
Zurück zum Zitat F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)PubMedCrossRef F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)PubMedCrossRef
6.
Zurück zum Zitat F.J.G. de Abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008)CrossRef F.J.G. de Abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008)CrossRef
7.
Zurück zum Zitat F.J. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014)CrossRef F.J. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014)CrossRef
8.
Zurück zum Zitat T.J. Davis, D.E. Gómez, Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev. Modern Phys. 89 (2017) T.J. Davis, D.E. Gómez, Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev. Modern Phys. 89 (2017)
9.
Zurück zum Zitat P.T. Kristensen, S. Hughes, Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. ACS Photon. 1, 2–10 (2013)CrossRef P.T. Kristensen, S. Hughes, Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. ACS Photon. 1, 2–10 (2013)CrossRef
10.
Zurück zum Zitat Q. Bai, M. Perrin, C. Sauvan, J.P. Hugonin, P. Lalanne, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Expr. 21, 27371–27382 (2013)CrossRef Q. Bai, M. Perrin, C. Sauvan, J.P. Hugonin, P. Lalanne, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Expr. 21, 27371–27382 (2013)CrossRef
11.
Zurück zum Zitat D.M. Yu, Y.N. Liu, F.L. Tian, X.M. Pan, X.Q. Sheng, Accurate thermoplasmonic simulation of metallic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 187, 150–160 (2017)CrossRef D.M. Yu, Y.N. Liu, F.L. Tian, X.M. Pan, X.Q. Sheng, Accurate thermoplasmonic simulation of metallic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 187, 150–160 (2017)CrossRef
12.
Zurück zum Zitat N.A. Mortensen, Mesoscopic electrodynamics at metal surfaces. Nanophotonics 10, 2563–2616 (2021)CrossRef N.A. Mortensen, Mesoscopic electrodynamics at metal surfaces. Nanophotonics 10, 2563–2616 (2021)CrossRef
13.
Zurück zum Zitat J.B. Schneider, Understanding the finite-difference time-domain method, School of electrical engineering and computer science. Washington State University (2010) J.B. Schneider, Understanding the finite-difference time-domain method, School of electrical engineering and computer science. Washington State University (2010)
14.
Zurück zum Zitat F.L. Teixeira, C. Sarris, Y. Zhang, D.Y. Na, J.P. Berenger, Y. Su, M. Okoniewski, W.C. Chew, V. Backman, J.J. Simpson, Finite-difference time-domain methods. Nat. Rev. Methods Prim. 3 (2023) F.L. Teixeira, C. Sarris, Y. Zhang, D.Y. Na, J.P. Berenger, Y. Su, M. Okoniewski, W.C. Chew, V. Backman, J.J. Simpson, Finite-difference time-domain methods. Nat. Rev. Methods Prim. 3 (2023)
15.
Zurück zum Zitat M.A. Yurkin, A.G. Hoekstra, The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011)CrossRef M.A. Yurkin, A.G. Hoekstra, The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011)CrossRef
16.
Zurück zum Zitat B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491 (1994)CrossRef B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491 (1994)CrossRef
17.
Zurück zum Zitat S. Rotter, S. Gigan, Light fields in complex media: mesoscopic scattering meets wave control. Rev. Modern Phys. 89 (2017) S. Rotter, S. Gigan, Light fields in complex media: mesoscopic scattering meets wave control. Rev. Modern Phys. 89 (2017)
18.
Zurück zum Zitat G. Baffou, R. Quidant, C. Girard, Thermoplasmonics modeling: a Green’s function approach, Phys. Rev. B 82 (2010) G. Baffou, R. Quidant, C. Girard, Thermoplasmonics modeling: a Green’s function approach, Phys. Rev. B 82 (2010)
19.
Zurück zum Zitat C. Hafner, R. Ballisti, The multiple multipole method (Mmp). COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 2, 1–7 (1983)CrossRef C. Hafner, R. Ballisti, The multiple multipole method (Mmp). COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 2, 1–7 (1983)CrossRef
20.
Zurück zum Zitat N.G. Khlebtsov, T-matrix method in plasmonics: an overview. J. Quant. Spectrosc. Radiat. Transfer 123, 184–217 (2013)CrossRef N.G. Khlebtsov, T-matrix method in plasmonics: an overview. J. Quant. Spectrosc. Radiat. Transfer 123, 184–217 (2013)CrossRef
21.
Zurück zum Zitat K.M. Leung, Y.F. Liu, Photon band structures: the plane-wave method. Phys. Rev. B Condens. Matter 41, 10188–10190 (1990)PubMedCrossRef K.M. Leung, Y.F. Liu, Photon band structures: the plane-wave method. Phys. Rev. B Condens. Matter 41, 10188–10190 (1990)PubMedCrossRef
22.
Zurück zum Zitat A. Amirjani, P.Z. Abyaneh, P.A. Masouleh, S.K. Sadrnezhaad, Finite and boundary element methods for simulating optical properties of plasmonic nanostructures. Plasmonics 17, 1095–1106 (2022)CrossRef A. Amirjani, P.Z. Abyaneh, P.A. Masouleh, S.K. Sadrnezhaad, Finite and boundary element methods for simulating optical properties of plasmonic nanostructures. Plasmonics 17, 1095–1106 (2022)CrossRef
23.
Zurück zum Zitat G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef
24.
Zurück zum Zitat G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p. 275 G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p. 275
25.
26.
Zurück zum Zitat L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef
27.
Zurück zum Zitat M. Quintanilla, L.M. Liz-Marzán, Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018)CrossRef M. Quintanilla, L.M. Liz-Marzán, Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018)CrossRef
28.
Zurück zum Zitat H. Zhou, M. Sharma, O. Berezin, D. Zuckerman, M.Y. Berezin, Nanothermometry: from microscopy to thermal treatments. Chemphyschem : a Eur. J. Chem. Phys. Phys. Chem. 17, 27–36 (2016)CrossRef H. Zhou, M. Sharma, O. Berezin, D. Zuckerman, M.Y. Berezin, Nanothermometry: from microscopy to thermal treatments. Chemphyschem : a Eur. J. Chem. Phys. Phys. Chem. 17, 27–36 (2016)CrossRef
29.
Zurück zum Zitat S. Jones, D. Andrén, P. Karpinski, M. Käll, Photothermal heating of plasmonic nanoantennas: influence on trapped particle dynamics and colloid distribution. ACS Photon. 5, 2878–2887 (2018)CrossRef S. Jones, D. Andrén, P. Karpinski, M. Käll, Photothermal heating of plasmonic nanoantennas: influence on trapped particle dynamics and colloid distribution. ACS Photon. 5, 2878–2887 (2018)CrossRef
30.
Zurück zum Zitat V.P. Pattani, J.W. Tunnell, Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Lasers Surg. Med. 44, 675–684 (2012)PubMedPubMedCentralCrossRef V.P. Pattani, J.W. Tunnell, Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Lasers Surg. Med. 44, 675–684 (2012)PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat L. Jauffred, Why not use thermal radiation for nanothermometry? Appl. Opt. 57, 9508–9511 (2018)PubMedCrossRef L. Jauffred, Why not use thermal radiation for nanothermometry? Appl. Opt. 57, 9508–9511 (2018)PubMedCrossRef
32.
Zurück zum Zitat R. Heiderhoff, H. Li, T. Riedl, Dynamic near-field scanning thermal microscopy on thin films. Microelectron. Reliab. 53, 1413–1417 (2013)CrossRef R. Heiderhoff, H. Li, T. Riedl, Dynamic near-field scanning thermal microscopy on thin films. Microelectron. Reliab. 53, 1413–1417 (2013)CrossRef
33.
Zurück zum Zitat Y. Zhang, W. Zhu, F. Hui, M. Lanza, T. Borca-Tasciuc, M. Muñoz Rojo, A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 30 (2019) Y. Zhang, W. Zhu, F. Hui, M. Lanza, T. Borca-Tasciuc, M. Muñoz Rojo, A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 30 (2019)
34.
Zurück zum Zitat B. Desiatov, I. Goykhman, U. Levy, Direct temperature mapping of nanoscale plasmonic devices. Nano Lett. 14, 648–652 (2014)PubMedCrossRef B. Desiatov, I. Goykhman, U. Levy, Direct temperature mapping of nanoscale plasmonic devices. Nano Lett. 14, 648–652 (2014)PubMedCrossRef
35.
Zurück zum Zitat K. Nam, H. Kim, W. Park, J.S. Ahn, S. Choi, Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy. Nanotechnology 34 (2022) K. Nam, H. Kim, W. Park, J.S. Ahn, S. Choi, Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy. Nanotechnology 34 (2022)
36.
Zurück zum Zitat M.L. Debasu, D. Ananias, I. Pastoriza-Santos, L.M. Liz-Marzan, J. Rocha, L.D. Carlos, All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er3+ emission and blackbody radiation. Adv. Mater. 25 (2013) 4868-4874 M.L. Debasu, D. Ananias, I. Pastoriza-Santos, L.M. Liz-Marzan, J. Rocha, L.D. Carlos, All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er3+ emission and blackbody radiation. Adv. Mater. 25 (2013) 4868-4874
37.
Zurück zum Zitat X. Wang, S.C. Huang, S. Hu, S. Yan, B. Ren, Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020)CrossRef X. Wang, S.C. Huang, S. Hu, S. Yan, B. Ren, Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020)CrossRef
38.
Zurück zum Zitat S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1 (2016) S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1 (2016)
39.
Zurück zum Zitat R.C. Maher, P.G. Etchegoin, E.C. Le Ru, L.F. Cohen, A conclusive demonstration of vibrational pumping under surface enhanced Raman scattering conditions. J. Phys. Chem. B 110, 11757–11760 (2006)PubMedCrossRef R.C. Maher, P.G. Etchegoin, E.C. Le Ru, L.F. Cohen, A conclusive demonstration of vibrational pumping under surface enhanced Raman scattering conditions. J. Phys. Chem. B 110, 11757–11760 (2006)PubMedCrossRef
40.
Zurück zum Zitat A. Yashchenok, A. Masic, D. Gorin, O. Inozemtseva, B.S. Shim, N. Kotov, A. Skirtach, H. Mohwald, Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Small 11, 1320–1327 (2015)PubMedCrossRef A. Yashchenok, A. Masic, D. Gorin, O. Inozemtseva, B.S. Shim, N. Kotov, A. Skirtach, H. Mohwald, Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Small 11, 1320–1327 (2015)PubMedCrossRef
41.
Zurück zum Zitat J. Huang, W. Wang, C.J. Murphy, D.G. Cahill, Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation. Proc. Natl. Acad. Sci. U.S.A. 111, 906–911 (2014)PubMedPubMedCentralCrossRef J. Huang, W. Wang, C.J. Murphy, D.G. Cahill, Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation. Proc. Natl. Acad. Sci. U.S.A. 111, 906–911 (2014)PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat X. Xie, D.G. Cahill, Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 109 (2016) X. Xie, D.G. Cahill, Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 109 (2016)
43.
Zurück zum Zitat A. Carattino, M. Caldarola, M. Orrit, Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018)PubMedCrossRef A. Carattino, M. Caldarola, M. Orrit, Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018)PubMedCrossRef
44.
Zurück zum Zitat S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 4, 496–501 (2013)PubMedCrossRef S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 4, 496–501 (2013)PubMedCrossRef
45.
Zurück zum Zitat J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020)PubMedCrossRef J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020)PubMedCrossRef
46.
Zurück zum Zitat S. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Dona, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, G. Chirico, A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett. 13, 2004–2010 (2013)PubMedCrossRef S. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Dona, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, G. Chirico, A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett. 13, 2004–2010 (2013)PubMedCrossRef
47.
Zurück zum Zitat S. Hormeno, P. Gregorio-Godoy, J. Perez-Juste, L.M. Liz-Marzan, B.H. Juarez, J.R. Arias-Gonzalez, Laser heating tunability by off-resonant irradiation of gold nanoparticles. Small 10, 376–384 (2014)PubMedCrossRef S. Hormeno, P. Gregorio-Godoy, J. Perez-Juste, L.M. Liz-Marzan, B.H. Juarez, J.R. Arias-Gonzalez, Laser heating tunability by off-resonant irradiation of gold nanoparticles. Small 10, 376–384 (2014)PubMedCrossRef
48.
Zurück zum Zitat S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka, Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J. Phys. Chem. B 111, 2365–2371 (2007)PubMedCrossRef S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka, Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J. Phys. Chem. B 111, 2365–2371 (2007)PubMedCrossRef
49.
Zurück zum Zitat G. Baffou, M.P. Kreuzer, F. Kulzer, R. Quidant, Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009)PubMedCrossRef G. Baffou, M.P. Kreuzer, F. Kulzer, R. Quidant, Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009)PubMedCrossRef
50.
Zurück zum Zitat D. Semeniak, D.F. Cruz, A. Chilkoti, M.H. Mikkelsen, Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: a review of recent technologies. Adv. Mater. 35, e2107986 (2023)PubMedCrossRef D. Semeniak, D.F. Cruz, A. Chilkoti, M.H. Mikkelsen, Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: a review of recent technologies. Adv. Mater. 35, e2107986 (2023)PubMedCrossRef
51.
Zurück zum Zitat G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef
52.
Zurück zum Zitat M. Siler, J. Jezek, P. Jakl, Z. Pilat, P. Zemanek, Direct measurement of the temperature profile close to an optically trapped absorbing particle. Opt. Lett. 41, 870–873 (2016)PubMedCrossRef M. Siler, J. Jezek, P. Jakl, Z. Pilat, P. Zemanek, Direct measurement of the temperature profile close to an optically trapped absorbing particle. Opt. Lett. 41, 870–873 (2016)PubMedCrossRef
53.
Zurück zum Zitat A. Sharma, P. Verwilst, M. Li, D. Ma, N. Singh, J. Yoo, Y. Kim, Y. Yang, J.H. Zhu, H. Huang, X.L. Hu, X.P. He, L. Zeng, T.D. James, X. Peng, J.L. Sessler, J.S. Kim, Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024)PubMedPubMedCentralCrossRef A. Sharma, P. Verwilst, M. Li, D. Ma, N. Singh, J. Yoo, Y. Kim, Y. Yang, J.H. Zhu, H. Huang, X.L. Hu, X.P. He, L. Zeng, T.D. James, X. Peng, J.L. Sessler, J.S. Kim, Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024)PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat J.S. Donner, S.A. Thompson, M.P. Kreuzer, G. Baffou, R. Quidant, Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012)PubMedCrossRef J.S. Donner, S.A. Thompson, M.P. Kreuzer, G. Baffou, R. Quidant, Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012)PubMedCrossRef
55.
Zurück zum Zitat J.S. Donner, S.A. Thompson, C. Alonso-Ortega, J. Morales, L.G. Rico, S.I.C.O. Santos, R. Quidant, Imaging of plasmonic heating in a living organism. ACS Nano 7, 8666–8672 (2013)PubMedCrossRef J.S. Donner, S.A. Thompson, C. Alonso-Ortega, J. Morales, L.G. Rico, S.I.C.O. Santos, R. Quidant, Imaging of plasmonic heating in a living organism. ACS Nano 7, 8666–8672 (2013)PubMedCrossRef
56.
Zurück zum Zitat S. Ebrahimi, Y. Akhlaghi, M. Kompany-Zareh, A. Rinnan, Nucleic acid based fluorescent nanothermometers. ACS Nano 8, 10372–10382 (2014)PubMedCrossRef S. Ebrahimi, Y. Akhlaghi, M. Kompany-Zareh, A. Rinnan, Nucleic acid based fluorescent nanothermometers. ACS Nano 8, 10372–10382 (2014)PubMedCrossRef
57.
Zurück zum Zitat M.J. Chiu, L.K. Chu, Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer. Phys. Chem. Chem. Phys. 17, 17090–17100 (2015)PubMedCrossRef M.J. Chiu, L.K. Chu, Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer. Phys. Chem. Chem. Phys. 17, 17090–17100 (2015)PubMedCrossRef
58.
Zurück zum Zitat L.M. Maestro, P. Haro-González, J.G. Coello, D. Jaque, Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Appl. Phys. Lett. 100 (2012) L.M. Maestro, P. Haro-González, J.G. Coello, D. Jaque, Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Appl. Phys. Lett. 100 (2012)
59.
Zurück zum Zitat L.M. Maestro, P. Haro-Gonzalez, A. Sanchez-Iglesias, L.M. Liz-Marzan, J. Garcia Sole, D. Jaque, Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles. Langmuir: ACS J. Surf. Colloids 30, 1650–1658 (2014) L.M. Maestro, P. Haro-Gonzalez, A. Sanchez-Iglesias, L.M. Liz-Marzan, J. Garcia Sole, D. Jaque, Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles. Langmuir: ACS J. Surf. Colloids 30, 1650–1658 (2014)
60.
Zurück zum Zitat L.M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A.J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J.G. Sole, D. Jaque, Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale 5, 7882–7889 (2013)PubMedCrossRef L.M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A.J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J.G. Sole, D. Jaque, Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale 5, 7882–7889 (2013)PubMedCrossRef
61.
Zurück zum Zitat S. Rohani, M. Quintanilla, S. Tuccio, F. De Angelis, E. Cantelar, A.O. Govorov, L. Razzari, F. Vetrone, Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanorods. Adv. Opt. Mater. 3, 1606–1613 (2015)CrossRef S. Rohani, M. Quintanilla, S. Tuccio, F. De Angelis, E. Cantelar, A.O. Govorov, L. Razzari, F. Vetrone, Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanorods. Adv. Opt. Mater. 3, 1606–1613 (2015)CrossRef
62.
Zurück zum Zitat D. Jaque, L.M. Maestro, E. Escudero, E.M. Rodríguez, J.A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodríguez, M.C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, J. García Solé, Fluorescent nano-particles for multi-photon thermal sensing. J. Lumines. 133, 249–253 (2013) D. Jaque, L.M. Maestro, E. Escudero, E.M. Rodríguez, J.A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodríguez, M.C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, J. García Solé, Fluorescent nano-particles for multi-photon thermal sensing. J. Lumines. 133, 249–253 (2013)
63.
Zurück zum Zitat S. Premcheska, M. Lederer, A.M. Kaczmarek, The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chem. Commun. 58, 4288–4307 (2022)CrossRef S. Premcheska, M. Lederer, A.M. Kaczmarek, The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chem. Commun. 58, 4288–4307 (2022)CrossRef
64.
Zurück zum Zitat U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martinez Maestro, M. Acosta Elias, E. Bovero, F.C. van Veggel, J.A. Garcia Sole, D. Jaque, Subtissue thermal sensing based on neodymium-doped LaF(3) nanoparticles. ACS Nano 7, 1188–1199 (2013) U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martinez Maestro, M. Acosta Elias, E. Bovero, F.C. van Veggel, J.A. Garcia Sole, D. Jaque, Subtissue thermal sensing based on neodymium-doped LaF(3) nanoparticles. ACS Nano 7, 1188–1199 (2013)
65.
Zurück zum Zitat L. Jauffred, L.B. Oddershede, Two-photon quantum dot excitation during optical trapping. Nano Lett. 10, 1927–1930 (2010)PubMedCrossRef L. Jauffred, L.B. Oddershede, Two-photon quantum dot excitation during optical trapping. Nano Lett. 10, 1927–1930 (2010)PubMedCrossRef
66.
Zurück zum Zitat J.P. Tetienne, A. Lombard, D.A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, L.C. Hollenberg, Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016)PubMedCrossRef J.P. Tetienne, A. Lombard, D.A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, L.C. Hollenberg, Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016)PubMedCrossRef
67.
Zurück zum Zitat D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, M. Samoc, Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale 4, 6959–6961 (2012)PubMedCrossRef D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, M. Samoc, Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale 4, 6959–6961 (2012)PubMedCrossRef
68.
Zurück zum Zitat P. Rodriguez-Sevilla, Y. Zhang, P. Haro-Gonzalez, F. Sanz-Rodriguez, F. Jaque, J.G. Sole, X. Liu, D. Jaque, Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv. Mater. 28, 2421–2426 (2016)PubMedCrossRef P. Rodriguez-Sevilla, Y. Zhang, P. Haro-Gonzalez, F. Sanz-Rodriguez, F. Jaque, J.G. Sole, X. Liu, D. Jaque, Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv. Mater. 28, 2421–2426 (2016)PubMedCrossRef
69.
Zurück zum Zitat S. Baral, S.C. Johnson, A.A. Alaulamie, H.H. Richardson, Nanothermometry using optically trapped erbium oxide nanoparticle. Appl. Phys. A 122 (2016) S. Baral, S.C. Johnson, A.A. Alaulamie, H.H. Richardson, Nanothermometry using optically trapped erbium oxide nanoparticle. Appl. Phys. A 122 (2016)
70.
Zurück zum Zitat Z. Qin, Z. Wang, F. Kong, J. Su, Z. Huang, P. Zhao, S. Chen, Q. Zhang, F. Shi, J. Du, In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors. Nat. Commun. 14, 6278 (2023)PubMedPubMedCentralCrossRef Z. Qin, Z. Wang, F. Kong, J. Su, Z. Huang, P. Zhao, S. Chen, Q. Zhang, F. Shi, J. Du, In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors. Nat. Commun. 14, 6278 (2023)PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.S. Bouchard, D. Budker, Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104 (2010) V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.S. Bouchard, D. Budker, Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104 (2010)
72.
Zurück zum Zitat F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011)CrossRef F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011)CrossRef
73.
Zurück zum Zitat P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J.H. Shim, High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013)PubMedCrossRef P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J.H. Shim, High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013)PubMedCrossRef
74.
Zurück zum Zitat G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013)PubMedPubMedCentralCrossRef G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013)PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Y.K. Tzeng, P.C. Tsai, H.Y. Liu, O.Y. Chen, H. Hsu, F.G. Yee, M.S. Chang, H.C. Chang, Time-resolved luminescence nanothermometry with nitrogen-vacancy centers in nanodiamonds. Nano Lett. 15, 3945–3952 (2015)PubMedCrossRef Y.K. Tzeng, P.C. Tsai, H.Y. Liu, O.Y. Chen, H. Hsu, F.G. Yee, M.S. Chang, H.C. Chang, Time-resolved luminescence nanothermometry with nitrogen-vacancy centers in nanodiamonds. Nano Lett. 15, 3945–3952 (2015)PubMedCrossRef
76.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834 G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834
77.
Zurück zum Zitat G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6, 2452–2458 (2012)PubMedCrossRef G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6, 2452–2458 (2012)PubMedCrossRef
78.
Zurück zum Zitat P. Berto, E.B. Ureña, P. Bon, R. Quidant, H. Rigneault, G. Baffou, Quantitative absorption spectroscopy of nano-objects. Phys. Rev. B 86 (2012) P. Berto, E.B. Ureña, P. Bon, R. Quidant, H. Rigneault, G. Baffou, Quantitative absorption spectroscopy of nano-objects. Phys. Rev. B 86 (2012)
79.
Zurück zum Zitat A.P. Bell, J.A. Fairfield, E.K. McCarthy, S. Mills, J.J. Boland, G. Baffou, D. McCloskey, Quantitative study of the photothermal properties of metallic nanowire networks. ACS Nano 9, 5551–5558 (2015)PubMedCrossRef A.P. Bell, J.A. Fairfield, E.K. McCarthy, S. Mills, J.J. Boland, G. Baffou, D. McCloskey, Quantitative study of the photothermal properties of metallic nanowire networks. ACS Nano 9, 5551–5558 (2015)PubMedCrossRef
80.
Zurück zum Zitat G. Baffou, J. Polleux, H. Rigneault, S. Monneret, Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014)CrossRef G. Baffou, J. Polleux, H. Rigneault, S. Monneret, Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014)CrossRef
81.
Zurück zum Zitat K. Setoura, Y. Okada, D. Werner, S. Hashimoto, Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013)PubMedCrossRef K. Setoura, Y. Okada, D. Werner, S. Hashimoto, Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013)PubMedCrossRef
82.
Zurück zum Zitat Z.X. Chen, X.N. Shan, Y. Guan, S.P. Wang, J.J. Zhu, N.J. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef Z.X. Chen, X.N. Shan, Y. Guan, S.P. Wang, J.J. Zhu, N.J. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef
83.
Zurück zum Zitat Y. Seol, A.E. Carpenter, T.T. Perkins, Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006)PubMedCrossRef Y. Seol, A.E. Carpenter, T.T. Perkins, Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006)PubMedCrossRef
84.
Zurück zum Zitat P.M. Bendix, S. Nader, S. Reihani, L.B. Oddershede, Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4, 2256–2262 (2010)PubMedCrossRef P.M. Bendix, S. Nader, S. Reihani, L.B. Oddershede, Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4, 2256–2262 (2010)PubMedCrossRef
86.
Zurück zum Zitat P. Haro-Gonzalez, W.T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, C. Iglesias-de la Cruz Mdel, F. Sanz-Rodriguez, J.Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A.K. Kar, J.G. Sole, D. Jaque, L. Paterson, Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells. Small 9, 2162–2170 (2013) P. Haro-Gonzalez, W.T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, C. Iglesias-de la Cruz Mdel, F. Sanz-Rodriguez, J.Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A.K. Kar, J.G. Sole, D. Jaque, L. Paterson, Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells. Small 9, 2162–2170 (2013)
87.
Zurück zum Zitat D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, Hot brownian motion. Phys. Rev. Lett. 105, 090604 (2010)PubMedCrossRef D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, Hot brownian motion. Phys. Rev. Lett. 105, 090604 (2010)PubMedCrossRef
88.
Zurück zum Zitat J.Y. Mo, M.G. Raizen, Highly resolved brownian motion in space and in time. Annu. Rev. Fluid Mech. 51, 403–428 (2019)CrossRef J.Y. Mo, M.G. Raizen, Highly resolved brownian motion in space and in time. Annu. Rev. Fluid Mech. 51, 403–428 (2019)CrossRef
89.
Zurück zum Zitat E. Ortiz-Rivero, S. Orozco-Barrera, H. Chatterjee, C.D. Gonzalez-Gomez, C. Caro, M.L. Garcia-Martin, P.H. Gonzalez, R.A. Rica, F. Gamez, Light-to-heat conversion of optically trapped hot Brownian particles. ACS Nano 17, 24961–24971 (2023)PubMedPubMedCentralCrossRef E. Ortiz-Rivero, S. Orozco-Barrera, H. Chatterjee, C.D. Gonzalez-Gomez, C. Caro, M.L. Garcia-Martin, P.H. Gonzalez, R.A. Rica, F. Gamez, Light-to-heat conversion of optically trapped hot Brownian particles. ACS Nano 17, 24961–24971 (2023)PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat P.V. Ruijgrok, N.R. Verhart, P. Zijlstra, A.L. Tchebotareva, M. Orrit, Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107, 037401 (2011)PubMedCrossRef P.V. Ruijgrok, N.R. Verhart, P. Zijlstra, A.L. Tchebotareva, M. Orrit, Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107, 037401 (2011)PubMedCrossRef
91.
Zurück zum Zitat H. Ma, P.M. Bendix, L.B. Oddershede, Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett. 12, 3954–3960 (2012)PubMedCrossRef H. Ma, P.M. Bendix, L.B. Oddershede, Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett. 12, 3954–3960 (2012)PubMedCrossRef
92.
Zurück zum Zitat F. Hajizadeh, L. Shao, D. Andrén, P. Johansson, H. Rubinsztein-Dunlop, M. Käll, Brownian fluctuations of an optically rotated nanorod. Optica 4, 746 (2017)CrossRef F. Hajizadeh, L. Shao, D. Andrén, P. Johansson, H. Rubinsztein-Dunlop, M. Käll, Brownian fluctuations of an optically rotated nanorod. Optica 4, 746 (2017)CrossRef
93.
Zurück zum Zitat H. Ma, P. Tian, J. Pello, P.M. Bendix, L.B. Oddershede, Heat generation by irradiated complex composite nanostructures. Nano Lett. 14, 612–619 (2014)PubMedCrossRef H. Ma, P. Tian, J. Pello, P.M. Bendix, L.B. Oddershede, Heat generation by irradiated complex composite nanostructures. Nano Lett. 14, 612–619 (2014)PubMedCrossRef
94.
Zurück zum Zitat A. Ohlinger, S. Nedev, A.A. Lutich, J. Feldmann, Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett. 11, 1770–1774 (2011)PubMedCrossRef A. Ohlinger, S. Nedev, A.A. Lutich, J. Feldmann, Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett. 11, 1770–1774 (2011)PubMedCrossRef
95.
Zurück zum Zitat A. Kyrsting, P.M. Bendix, D.G. Stamou, L.B. Oddershede, Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011)PubMedCrossRef A. Kyrsting, P.M. Bendix, D.G. Stamou, L.B. Oddershede, Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011)PubMedCrossRef
96.
Zurück zum Zitat T. Baumgart, G. Hunt, E.R. Farkas, W.W. Webb, G.W. Feigenson, Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochem. Biophys. Acta. 1768, 2182–2194 (2007)PubMedCrossRef T. Baumgart, G. Hunt, E.R. Farkas, W.W. Webb, G.W. Feigenson, Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochem. Biophys. Acta. 1768, 2182–2194 (2007)PubMedCrossRef
97.
Zurück zum Zitat G. Baffou, H. Rigneault, D. Marguet, L. Jullien, A critique of methods for temperature imaging in single cells. Nat. Methods 11, 899–901 (2014)PubMedCrossRef G. Baffou, H. Rigneault, D. Marguet, L. Jullien, A critique of methods for temperature imaging in single cells. Nat. Methods 11, 899–901 (2014)PubMedCrossRef
98.
Zurück zum Zitat K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012)PubMedCrossRef K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012)PubMedCrossRef
99.
Zurück zum Zitat T. Bai, N. Gu, Micro/Nanoscale Thermometry for Cellular Thermal Sensing. Small 12, 4590–4610 (2016)PubMedCrossRef T. Bai, N. Gu, Micro/Nanoscale Thermometry for Cellular Thermal Sensing. Small 12, 4590–4610 (2016)PubMedCrossRef
100.
Zurück zum Zitat D. Wang, Y.R. Koh, Z.A. Kudyshev, K. Maize, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, A. Shakouri, Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019)PubMedCrossRef D. Wang, Y.R. Koh, Z.A. Kudyshev, K. Maize, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, A. Shakouri, Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019)PubMedCrossRef
Metadaten
Titel
Characterization Techniques
verfasst von
Guohua Liu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8332-8_4