Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.03.2019

Characterizing and identifying reverted commits

Zeitschrift:
Empirical Software Engineering
Autoren:
Meng Yan, Xin Xia, David Lo, Ahmed E. Hassan, Shanping Li
Wichtige Hinweise
Communicated by: Massimiliano Di Penta

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In practice, a popular and coarse-grained approach for recovering from a problematic commit is to revert it (i.e., undoing the change). However, reverted commits could induce some issues for software development, such as impeding the development progress and increasing the difficulty for maintenance. In order to mitigate these issues, we set out to explore the following central question: can we characterize and identify which commits will be reverted? In this paper, we characterize commits using 27 commit features and build an identification model to identify commits that will be reverted. We first identify reverted commits by analyzing commit messages and comparing the changed content, and extract 27 commit features that can be divided into three dimensions, namely change, developer and message, respectively. Then, we build an identification model (e.g., random forest) based on the extracted features. To evaluate the effectiveness of our proposed model, we perform an empirical study on ten open source projects including a total of 125,241 commits. Our experimental results show that our model outperforms two baselines in terms of AUC-ROC and cost-effectiveness (i.e., percentage of detected reverted commits when inspecting 20% of total changed LOC). In terms of the average performance across the ten studied projects, our model achieves an AUC-ROC of 0.756 and a cost-effectiveness of 0.746, significantly improving the baselines by substantial margins. In addition, we found that “developer” is the most discriminative dimension among the three dimensions of features for the identification of reverted commits. However, using all the three dimensions of commit features leads to better performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise