Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an overview of the different charging architectures available for electric vehicles and plug-in hybrid electric vehicles. The charging architectures are addressed following two main categories: onboard chargers, used mainly for slow and semi-fast charging (generally AC connection), and off-board chargers, used for fast charging (DC connection). The chapter focuses on the mainstream solutions available in the industry, and also presents some recent advances and trends found in the literature. In addition, the chapter provides an introduction to well-established charging standards being used by manufacturers. Finally, the control schemes used in charging configurations, including the control schemes for DC–DC and AC–DC converter stages, are discussed, the latter considering both single- and three-phase control schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Haghbin S, Lundmark S, Alakula M, Carlson O (2013) Grid-connected integrated battery chargers in vehicle applications: review and new solution. IEEE Trans Ind Electron 60(2):459–473CrossRef Haghbin S, Lundmark S, Alakula M, Carlson O (2013) Grid-connected integrated battery chargers in vehicle applications: review and new solution. IEEE Trans Ind Electron 60(2):459–473CrossRef
2.
Zurück zum Zitat Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Vehicular Technol 61(8):3475–3489CrossRef Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Vehicular Technol 61(8):3475–3489CrossRef
3.
Zurück zum Zitat Yilmaz M, Krein PT (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron 28(5):2151–2169CrossRef Yilmaz M, Krein PT (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron 28(5):2151–2169CrossRef
4.
Zurück zum Zitat Aggeler D, Canales F, Zelaya-De La Parra H, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. Gothenburg, Sweden, pp 1–8 Aggeler D, Canales F, Zelaya-De La Parra H, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. Gothenburg, Sweden, pp 1–8
5.
Zurück zum Zitat Aditya K, Williamson SS. Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging—a comprehensive review. In: Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, June 2014, pp 1–6 Aditya K, Williamson SS. Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging—a comprehensive review. In: Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, June 2014, pp 1–6
6.
Zurück zum Zitat Gautam DS, Musavi F, Edington M, Eberle W, Dunford WG (2012) An automotive onboard 3.3-kw battery charger for PHEV application. IEEE Trans Vehicular Technol 61(8):3466–3474CrossRef Gautam DS, Musavi F, Edington M, Eberle W, Dunford WG (2012) An automotive onboard 3.3-kw battery charger for PHEV application. IEEE Trans Vehicular Technol 61(8):3466–3474CrossRef
7.
Zurück zum Zitat Kim J-S, Choe G-Y, Jung H-M, Lee B-K, Cho Y-J, Han K-B (2010) Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6 Kim J-S, Choe G-Y, Jung H-M, Lee B-K, Cho Y-J, Han K-B (2010) Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6
8.
Zurück zum Zitat Chae H-J, Moon H-T, Lee J-Y (2010) On-board battery charger for PHEV without high-voltage electrolytic capacitor. Electron Lett 46(25):1691–1692CrossRef Chae H-J, Moon H-T, Lee J-Y (2010) On-board battery charger for PHEV without high-voltage electrolytic capacitor. Electron Lett 46(25):1691–1692CrossRef
9.
Zurück zum Zitat Chae HJ, Kim WY, Yun SY, Jeong YS, Lee JY, Moon HT (2011) 3.3 kw on board charger for electric vehicle. In: 2011 I.E. 8th International Conference on Power Electronics and ECCE Asia (ICPE ECCE), May 2011, pp 2717–2719 Chae HJ, Kim WY, Yun SY, Jeong YS, Lee JY, Moon HT (2011) 3.3 kw on board charger for electric vehicle. In: 2011 I.E. 8th International Conference on Power Electronics and ECCE Asia (ICPE ECCE), May 2011, pp 2717–2719
10.
Zurück zum Zitat Bae S, Kwasinski A (2012) Spatial and temporal model of electric vehicle charging demand. IEEE Trans Smart Grid 3(1):394–403CrossRef Bae S, Kwasinski A (2012) Spatial and temporal model of electric vehicle charging demand. IEEE Trans Smart Grid 3(1):394–403CrossRef
11.
Zurück zum Zitat Qian K, Chengke Z, Allan M, Yuan Y (2011) Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst 26(2):802–810CrossRef Qian K, Chengke Z, Allan M, Yuan Y (2011) Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst 26(2):802–810CrossRef
12.
Zurück zum Zitat SAE electric vehicle and plug in hybrid electric vehicle conductive charge coupler (2012) SAE Std. J1772, Oct 2012 SAE electric vehicle and plug in hybrid electric vehicle conductive charge coupler (2012) SAE Std. J1772, Oct 2012
13.
Zurück zum Zitat Oh C-Y, Kim D-H, Woo D-G, Sung W-Y, Kim Y-S, Lee B-K (2013) A high-efficient nonisolated single-stage on-board battery charger for electric vehicles. IEEE Trans Power Electron 28(12):5746–5757CrossRef Oh C-Y, Kim D-H, Woo D-G, Sung W-Y, Kim Y-S, Lee B-K (2013) A high-efficient nonisolated single-stage on-board battery charger for electric vehicles. IEEE Trans Power Electron 28(12):5746–5757CrossRef
14.
Zurück zum Zitat Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional ac/dc and dc/dc converter for plug-in hybrid electric vehicles. IEEE Trans Vehicular Technol 58(8):3970–3980CrossRef Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional ac/dc and dc/dc converter for plug-in hybrid electric vehicles. IEEE Trans Vehicular Technol 58(8):3970–3980CrossRef
15.
Zurück zum Zitat Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs. IEEE Trans Vehicular Technol 61(5):2018–2032CrossRef Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs. IEEE Trans Vehicular Technol 61(5):2018–2032CrossRef
16.
Zurück zum Zitat Rippel WE (1990) Integrated traction inverter and battery charger apparatus. US Patent 4,920,475, 24 Apr 1990 Rippel WE (1990) Integrated traction inverter and battery charger apparatus. US Patent 4,920,475, 24 Apr 1990
17.
Zurück zum Zitat Rippel WE, Cocconi AG (1992) Integrated motor drive and recharge system. US Patent 5,099,186, 24 Mar 1992 Rippel WE, Cocconi AG (1992) Integrated motor drive and recharge system. US Patent 5,099,186, 24 Mar 1992
18.
Zurück zum Zitat De Sousa L, Bouchez B (2011) Combined electric device for powering and charging. US Patent App. 13/127,850, 15 Sept 2011 De Sousa L, Bouchez B (2011) Combined electric device for powering and charging. US Patent App. 13/127,850, 15 Sept 2011
19.
Zurück zum Zitat De Sousa L, Silvestre B, Bouchez B (2010) A combined multiphase electric drive and fast battery charger for electric vehicles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6 De Sousa L, Silvestre B, Bouchez B (2010) A combined multiphase electric drive and fast battery charger for electric vehicles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6
20.
Zurück zum Zitat Bruyre A, De Sousa L, Bouchez B, Sandulescu P, Kestelyn X, Semail E (2010) A multiphase traction/fast-battery-charger drive for electric or plug-in hybrid vehicles: solutions for control in traction mode. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–7 Bruyre A, De Sousa L, Bouchez B, Sandulescu P, Kestelyn X, Semail E (2010) A multiphase traction/fast-battery-charger drive for electric or plug-in hybrid vehicles: solutions for control in traction mode. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–7
21.
Zurück zum Zitat Lacroix S, Laboure E, Hilairet M (2010) An integrated fast battery charger for electric vehicle. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6 Lacroix S, Laboure E, Hilairet M (2010) An integrated fast battery charger for electric vehicle. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6
22.
Zurück zum Zitat Haghbin S, Lundmark S, Alakula M, Carlson O (2011) An isolated high-power integrated charger in electrified-vehicle applications. IEEE Trans Vehicular Technol 60(9):4115–4126CrossRef Haghbin S, Lundmark S, Alakula M, Carlson O (2011) An isolated high-power integrated charger in electrified-vehicle applications. IEEE Trans Vehicular Technol 60(9):4115–4126CrossRef
23.
Zurück zum Zitat Haghbin S, Khan K, Zhao S, Alakula M, Lundmark S, Carlson O (2013) An integrated 20-kw motor drive and isolated battery charger for plug-in vehicles. IEEE Trans Power Electron 28(8):4013–4029CrossRef Haghbin S, Khan K, Zhao S, Alakula M, Lundmark S, Carlson O (2013) An integrated 20-kw motor drive and isolated battery charger for plug-in vehicles. IEEE Trans Power Electron 28(8):4013–4029CrossRef
24.
Zurück zum Zitat Alaküla M, Haghbin S (2011) Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding. WO Patent App. PCT/SE2011/050,745, 22 Dec 2011 Alaküla M, Haghbin S (2011) Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding. WO Patent App. PCT/SE2011/050,745, 22 Dec 2011
25.
Zurück zum Zitat Chang H-C, Liaw C-M (2009) Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans Vehicular Technol 58(7):3198–3215CrossRef Chang H-C, Liaw C-M (2009) Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans Vehicular Technol 58(7):3198–3215CrossRef
27.
Zurück zum Zitat Christen D, Tschannen S, Biela J (2012) Highly efficient and compact DC-DC converter for ultra-fast charging of electric vehicles. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Sep 2012, pp LS5d.3–1–LS5d.3–8 Christen D, Tschannen S, Biela J (2012) Highly efficient and compact DC-DC converter for ultra-fast charging of electric vehicles. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Sep 2012, pp LS5d.3–1–LS5d.3–8
28.
Zurück zum Zitat Chan CC, Chau KT (1997) An overview of power electronics in electric vehicles. IEEE Trans Ind Electron 44(1):3–13CrossRef Chan CC, Chau KT (1997) An overview of power electronics in electric vehicles. IEEE Trans Ind Electron 44(1):3–13CrossRef
29.
Zurück zum Zitat Gomez JC, Morcos MM (2003) Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans Power Del 18(3):975–981CrossRef Gomez JC, Morcos MM (2003) Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans Power Del 18(3):975–981CrossRef
30.
Zurück zum Zitat Du Y, Zhou X, Bai S, Lukic S, Huang A (2010) Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. Palm Springs, CA, USA, Feb 2010, pp 1145–1151 Du Y, Zhou X, Bai S, Lukic S, Huang A (2010) Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. Palm Springs, CA, USA, Feb 2010, pp 1145–1151
31.
Zurück zum Zitat Rivera S, Wu B, Kouro S, Yaramasu V, Wang J (2015) Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus. IEEE Trans Ind Electron 62(4):1999–2009CrossRef Rivera S, Wu B, Kouro S, Yaramasu V, Wang J (2015) Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus. IEEE Trans Ind Electron 62(4):1999–2009CrossRef
32.
Zurück zum Zitat Bai S, Lukic SM (2013) Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans Power Electron 28(12):5793–5803CrossRef Bai S, Lukic SM (2013) Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans Power Electron 28(12):5793–5803CrossRef
33.
Zurück zum Zitat Williamson SS, Rathore AK, Musavi F (2015) Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans Ind Electron 62(5):3021–3032CrossRef Williamson SS, Rathore AK, Musavi F (2015) Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans Ind Electron 62(5):3021–3032CrossRef
34.
Zurück zum Zitat Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075CrossRef Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075CrossRef
35.
Zurück zum Zitat Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a DC network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507CrossRef Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a DC network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507CrossRef
36.
Zurück zum Zitat Ito Y, Zhongqing Y, Akagi H (2004) DC micro-grid based distribution power generation system. 3:1740–1745 Ito Y, Zhongqing Y, Akagi H (2004) DC micro-grid based distribution power generation system. 3:1740–1745
38.
Zurück zum Zitat Dusmez S, Cook A, Khaligh A (2011) Comprehensive analysis of high quality power converters for level 3 off-board chargers. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, Sep 2011, pp 1–10 Dusmez S, Cook A, Khaligh A (2011) Comprehensive analysis of high quality power converters for level 3 off-board chargers. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, Sep 2011, pp 1–10
39.
Zurück zum Zitat Wilson JWA (1978) The forced-commutated inverter as a regenerative rectifier. IEEE Trans Ind Appl IA-14(4):335–340CrossRef Wilson JWA (1978) The forced-commutated inverter as a regenerative rectifier. IEEE Trans Ind Appl IA-14(4):335–340CrossRef
40.
Zurück zum Zitat Bin W (2006) High-power converters and AC drives. Wiley-IEEE Press, Chichester, West Sussex Bin W (2006) High-power converters and AC drives. Wiley-IEEE Press, Chichester, West Sussex
41.
Zurück zum Zitat Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg (eds) (2002) Control in power electronics: selected problems. Academic Press, New York Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg (eds) (2002) Control in power electronics: selected problems. Academic Press, New York
42.
Zurück zum Zitat Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press, Chichester, West SussexCrossRef Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press, Chichester, West SussexCrossRef
43.
Zurück zum Zitat Kolar JW, Ertl H, Zach FC (1996) Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (Vienna) rectifier employing a novel integrated power semiconductor module. In: Applied Power Electronics Conference and Exposition, 1996. APEC’96. Conference Proceedings 1996, Eleventh Annual, vol 2, pp 514–523 Kolar JW, Ertl H, Zach FC (1996) Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (Vienna) rectifier employing a novel integrated power semiconductor module. In: Applied Power Electronics Conference and Exposition, 1996. APEC’96. Conference Proceedings 1996, Eleventh Annual, vol 2, pp 514–523
44.
Zurück zum Zitat Bai S, Lukic SM (2013) New method to achieve ac harmonic elimination and energy storage integration for 12-pulse diode rectifiers. IEEE Trans Ind Electron 60(7):2547–2554CrossRef Bai S, Lukic SM (2013) New method to achieve ac harmonic elimination and energy storage integration for 12-pulse diode rectifiers. IEEE Trans Ind Electron 60(7):2547–2554CrossRef
45.
Zurück zum Zitat Garcia O, Zumel P, De Castro A, Cobos JA (2006) Automotive dc-dc bidirectional converter made with many interleaved buck stages. IEEE Trans Power Electron 21(3):578–586CrossRef Garcia O, Zumel P, De Castro A, Cobos JA (2006) Automotive dc-dc bidirectional converter made with many interleaved buck stages. IEEE Trans Power Electron 21(3):578–586CrossRef
46.
Zurück zum Zitat Kutkut NH, Divan DM, Novotny DW, Marion RH (1998) Design considerations and topology selection for a 120-kw IGBT converter for EV fast charging. IEEE Trans Power Electron 13(1):169–178CrossRef Kutkut NH, Divan DM, Novotny DW, Marion RH (1998) Design considerations and topology selection for a 120-kw IGBT converter for EV fast charging. IEEE Trans Power Electron 13(1):169–178CrossRef
47.
Zurück zum Zitat Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A novel ZVZCS full-bridge DC/DC converter used for electric vehicles. IEEE Trans Power Electron 27(6):2752–2769CrossRef Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A novel ZVZCS full-bridge DC/DC converter used for electric vehicles. IEEE Trans Power Electron 27(6):2752–2769CrossRef
49.
Zurück zum Zitat Dickerman L, Harrison J (2010) A new car, a new grid. IEEE Power Energy Mag 8(2):55–61CrossRef Dickerman L, Harrison J (2010) A new car, a new grid. IEEE Power Energy Mag 8(2):55–61CrossRef
50.
Zurück zum Zitat Mohagheghi S, Parkhideh B, Bhattacharya S (2012) Inductive power transfer for electric vehicles: potential benefits for the distribution grid. In: Electric Vehicle Conference (IEVC), 2012 I.E. International, 2012, pp 1–8 Mohagheghi S, Parkhideh B, Bhattacharya S (2012) Inductive power transfer for electric vehicles: potential benefits for the distribution grid. In: Electric Vehicle Conference (IEVC), 2012 I.E. International, 2012, pp 1–8
51.
Zurück zum Zitat Plugs, socket-outlets, vehicle connectors and vehicle inlets—conductive charging of electric vehicles—part 2: dimensional compatibility and interchangeability requirements for a.c. pin and contact-tube accessories (2011) IEC 62196–2, Oct 2011 Plugs, socket-outlets, vehicle connectors and vehicle inlets—conductive charging of electric vehicles—part 2: dimensional compatibility and interchangeability requirements for a.c. pin and contact-tube accessories (2011) IEC 62196–2, Oct 2011
52.
Zurück zum Zitat Botsford C, Szczepanek A (2009) Fast charging vs. slow charging: pros and cons for the new age of electric vehicles. In: Battery, hybrid and fuel cell electric vehicle symposium (EVS), 2009 24th International, May 2009 Botsford C, Szczepanek A (2009) Fast charging vs. slow charging: pros and cons for the new age of electric vehicles. In: Battery, hybrid and fuel cell electric vehicle symposium (EVS), 2009 24th International, May 2009
53.
Zurück zum Zitat Malinowski M (2001) Sensorless control strategies for three-phase PWM rectifiers. PhD thesis, Warsaw University of Technology Malinowski M (2001) Sensorless control strategies for three-phase PWM rectifiers. PhD thesis, Warsaw University of Technology
54.
Zurück zum Zitat Blaschke F (1972) The process of feldorientirung to regleung the asynchronous machine. Siemens researchers Dev 1 (1): 184-193 Blaschke F (1972) The process of feldorientirung to regleung the asynchronous machine. Siemens researchers Dev 1 (1): 184-193
55.
Zurück zum Zitat Rodriguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel converters: an enabling technology for high-power applications. Proceed IEEE 97(11):1786–1817CrossRef Rodriguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel converters: an enabling technology for high-power applications. Proceed IEEE 97(11):1786–1817CrossRef
56.
Zurück zum Zitat Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. In: Industrial electronics, control and instrumentation, 1991. Proceedings. IECON’91, 1991 International Conference on, Oct/Nov 1991, vol 1, pp 819–824 Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. In: Industrial electronics, control and instrumentation, 1991. Proceedings. IECON’91, 1991 International Conference on, Oct/Nov 1991, vol 1, pp 819–824
57.
Zurück zum Zitat Malinowski M, Kazmierkowski MP, Hansen S, Blaabjerg F, Marques GD (2001) Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans Ind Appl 37(4):1019–1027CrossRef Malinowski M, Kazmierkowski MP, Hansen S, Blaabjerg F, Marques GD (2001) Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans Ind Appl 37(4):1019–1027CrossRef
58.
Zurück zum Zitat Serpa LA, Barbosa PM, Steimer PK, Kolar JW (2008) Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. In: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun 2008, pp 1668–1674 Serpa LA, Barbosa PM, Steimer PK, Kolar JW (2008) Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. In: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun 2008, pp 1668–1674
59.
Zurück zum Zitat Serpa LA, Kolar JW (2007) Virtual-flux direct power control for mains connected three-level NPC inverter systems. In: Power conversion conference—Nagoya, 2007. PCC ’07. pp 130–136 Serpa LA, Kolar JW (2007) Virtual-flux direct power control for mains connected three-level NPC inverter systems. In: Power conversion conference—Nagoya, 2007. PCC ’07. pp 130–136
60.
Zurück zum Zitat Eloy-García J, Arnaltes S, Rodríguez-Amenedo JL (2007) Extended direct power control for multilevel inverters including dc link middle point voltage control. IET Electron Power Appl 1(4):571–580CrossRef Eloy-García J, Arnaltes S, Rodríguez-Amenedo JL (2007) Extended direct power control for multilevel inverters including dc link middle point voltage control. IET Electron Power Appl 1(4):571–580CrossRef
61.
Zurück zum Zitat Rivera S, Kouro S, Wu B, Alepuz S, Malinowski M, Cortes P, Rodriguez J (2014) Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications. IEEE Trans Power Electron 29(10):5592–5604CrossRef Rivera S, Kouro S, Wu B, Alepuz S, Malinowski M, Cortes P, Rodriguez J (2014) Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications. IEEE Trans Power Electron 29(10):5592–5604CrossRef
62.
Zurück zum Zitat Kar NC, Iyer KLV, Labak A, Lu X, Lai C, Balamurali A, Esteban B, Sid-Ahmed M (2013) Courting and sparking: wooing consumers? Interest in the EV market. IEEE Electr Mag 1(1):21–31CrossRef Kar NC, Iyer KLV, Labak A, Lu X, Lai C, Balamurali A, Esteban B, Sid-Ahmed M (2013) Courting and sparking: wooing consumers? Interest in the EV market. IEEE Electr Mag 1(1):21–31CrossRef
63.
Zurück zum Zitat Lukic S, Pantic Z (2013) Cutting the cord: static and dynamic inductive wireless charging of electric vehicles. IEEE Electr Mag 1(1):57–64CrossRef Lukic S, Pantic Z (2013) Cutting the cord: static and dynamic inductive wireless charging of electric vehicles. IEEE Electr Mag 1(1):57–64CrossRef
64.
Zurück zum Zitat Pedder DAG, Brown AD, Skinner JA (1999) A contactless electrical energy transmission system. IEEE Trans Ind Electron 46(1):23–30CrossRef Pedder DAG, Brown AD, Skinner JA (1999) A contactless electrical energy transmission system. IEEE Trans Ind Electron 46(1):23–30CrossRef
65.
Zurück zum Zitat Wang C-S, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314CrossRef Wang C-S, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314CrossRef
66.
Zurück zum Zitat Green AW, Boys JT (1994) 10 khz inductively coupled power transfer-concept and control. In: Power Electronics and Variable-Speed Drives, 1994. Fifth International Conference on, Oct 1994, pp 694–699 Green AW, Boys JT (1994) 10 khz inductively coupled power transfer-concept and control. In: Power Electronics and Variable-Speed Drives, 1994. Fifth International Conference on, Oct 1994, pp 694–699
67.
Zurück zum Zitat Pantic Z, Bai S, Lukic SM (2009) Inductively coupled power transfer for continuously powered electric vehicles. In: Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE, Sept 2009, pp 1271–1278 Pantic Z, Bai S, Lukic SM (2009) Inductively coupled power transfer for continuously powered electric vehicles. In: Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE, Sept 2009, pp 1271–1278
68.
Zurück zum Zitat Huh J, Lee SW, Lee WY, Cho GH, Rim CT (2011) Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans Power Electron 26(12):3666–3679CrossRef Huh J, Lee SW, Lee WY, Cho GH, Rim CT (2011) Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans Power Electron 26(12):3666–3679CrossRef
69.
Zurück zum Zitat Shin J, Shin S, Kim Y, Ahn S, Lee S, Jung G, Jeon S-J, Cho D-H (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61(3):1179–1192CrossRef Shin J, Shin S, Kim Y, Ahn S, Lee S, Jung G, Jeon S-J, Cho D-H (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61(3):1179–1192CrossRef
70.
Zurück zum Zitat Vasiladiotis M, Rufer A (2015) A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations. IEEE Trans Ind Electron 62(5):3213–3222CrossRef Vasiladiotis M, Rufer A (2015) A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations. IEEE Trans Ind Electron 62(5):3213–3222CrossRef
71.
Zurück zum Zitat Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596CrossRef Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596CrossRef
72.
Zurück zum Zitat Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R (2015) Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans Power Electron 30(1):4–17CrossRef Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R (2015) Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans Power Electron 30(1):4–17CrossRef
73.
Zurück zum Zitat Tsirinomeny M, Rufer A (2015) Configurable modular multilevel converter (CMMC) for flexible EV. In: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, Sept 2015, pp 1–10 Tsirinomeny M, Rufer A (2015) Configurable modular multilevel converter (CMMC) for flexible EV. In: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, Sept 2015, pp 1–10
74.
Zurück zum Zitat Nabae A, Takahashi I, Akagi H (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl IA-17(5):518–523CrossRef Nabae A, Takahashi I, Akagi H (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl IA-17(5):518–523CrossRef
75.
Zurück zum Zitat Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580CrossRef Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580CrossRef
76.
Zurück zum Zitat Tan L, Wu B, Rivera S, Yaramasu V (2015) Comprehensive dc power balance management in high-power three-level dc-dc converter for electric vehicle fast charging. IEEE Trans Power Electron 31(1):89–100, Jan 2016 Tan L, Wu B, Rivera S, Yaramasu V (2015) Comprehensive dc power balance management in high-power three-level dc-dc converter for electric vehicle fast charging. IEEE Trans Power Electron 31(1):89–100, Jan 2016
77.
Zurück zum Zitat Rivera S, Wu B, Kouro S (2014) Distributed DC bus EV charging station using a single DC-link H-bridge multilevel converter. In: 2014 I.E. 23rd International Symposium on Industrial Electronics (ISIE), June 2014, pp 1496–1501 Rivera S, Wu B, Kouro S (2014) Distributed DC bus EV charging station using a single DC-link H-bridge multilevel converter. In: 2014 I.E. 23rd International Symposium on Industrial Electronics (ISIE), June 2014, pp 1496–1501
Metadaten
Titel
Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles
verfasst von
Sebastian Rivera
Samir Kouro
Bin Wu
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-43651-7_4