Skip to main content
Erschienen in: Quantum Information Processing 5/2019

01.05.2019

Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme

verfasst von: H. F. Chau, Zhen-Qiang Yin, Shuang Wang, Wei Chen, Zheng-Fu Han

Erschienen in: Quantum Information Processing | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, Chau et al. (Phys Rev A 95:022311, 2017) reported a quantum key distribution (QKD) scheme using four-dimensional qudits. Surprisingly, as a function of the bit error rate of the raw key, the secret key rate of this scheme is equal to that of the (qubit-based) six-state scheme under one-way classical communication using ideal apparatus in the limit of arbitrarily long raw key length. Here, we explain why this is the case in spite of the fact that these two schemes are not linearly related to each other. More importantly, we find that in terms of the four-dimensional dit error rate of the raw key, the Chau et al.’s scheme can tolerate up to 21.6% using one-way classical communications, which is better than the Sheridan and Scarani’s scheme (Phys Rev A 82:030301(R), 2010). In addition, we argue the experimental advantages of the Chau et al. implementation over the standard six-state scheme and report a corresponding proof-of-principle experiment using passive basis selection with decoy states. We also compare our experiment with the recent high secret key rate implementation of the Sheridan and Scarani’s scheme by Islam et al. (Sci Adv 3:e1701491, 2017).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
That is to say, there are four possible measurement outcomes for each qudit, say, 0, 1, 2, 3. The dit error rate refers to the error rate of this sifted key expressed in dits. One may convert this dit string to a bit string, say, by mapping 0, 1, 2, 3 to 00, 01, 10, 11, respectively. And one may talk about the BER of this sifted bit string key.
 
Literatur
1.
Zurück zum Zitat Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)ADSCrossRef Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)ADSCrossRef
2.
Zurück zum Zitat Lo, H.-K.: Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf. Comput. 1, 81 (2001)MathSciNetMATH Lo, H.-K.: Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf. Comput. 1, 81 (2001)MathSciNetMATH
3.
Zurück zum Zitat Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984) Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)
4.
Zurück zum Zitat Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRef Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRef
5.
Zurück zum Zitat Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADSCrossRef Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADSCrossRef
6.
Zurück zum Zitat Chau, H.F., Wang, Q., Wong, C.: Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols. Phys. Rev. A 95, 022311 (2017)ADSCrossRef Chau, H.F., Wang, Q., Wong, C.: Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols. Phys. Rev. A 95, 022311 (2017)ADSCrossRef
7.
Zurück zum Zitat Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301(R) (2010)ADSCrossRef Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301(R) (2010)ADSCrossRef
8.
Zurück zum Zitat Sheridan, L., Scarani, V.: Erratum: security proof for quantum key distribution using qudit systems. Phys. Rev. A 83, 039901(E) (2011)ADSCrossRef Sheridan, L., Scarani, V.: Erratum: security proof for quantum key distribution using qudit systems. Phys. Rev. A 83, 039901(E) (2011)ADSCrossRef
9.
Zurück zum Zitat Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat Photon 9, 827 (2015)ADSCrossRef Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat Photon 9, 827 (2015)ADSCrossRef
10.
Zurück zum Zitat Wang, S., Yin, Z.-Q., Chen, W., He, D.-Y., Song, X.-T., Li, H.-W., Zhang, L.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon 9, 832 (2015)ADSCrossRef Wang, S., Yin, Z.-Q., Chen, W., He, D.-Y., Song, X.-T., Li, H.-W., Zhang, L.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon 9, 832 (2015)ADSCrossRef
11.
Zurück zum Zitat Li, Y.-H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.-Y., Liao, S.-K., Yin, J., Zhang, Q., Ma, X., Peng, C.-Z., Pan, J.-W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302 (2016)ADSCrossRef Li, Y.-H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.-Y., Liao, S.-K., Yin, J., Zhang, Q., Ma, X., Peng, C.-Z., Pan, J.-W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302 (2016)ADSCrossRef
12.
Zurück zum Zitat Yin, Z.-Q., Wang, S., Chen, W., Han, Y.-G., Wang, R., Guo, G.-C., Han, Z.-F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9, 457 (2018)ADSCrossRef Yin, Z.-Q., Wang, S., Chen, W., Han, Y.-G., Wang, R., Guo, G.-C., Han, Z.-F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9, 457 (2018)ADSCrossRef
13.
Zurück zum Zitat Guan, J.-Y., Cao, Z., Liu, Y., Shen-Tu, G.-L., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Ma, X., Zhang, Q., Pan, J.-W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015)ADSCrossRef Guan, J.-Y., Cao, Z., Liu, Y., Shen-Tu, G.-L., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Ma, X., Zhang, Q., Pan, J.-W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015)ADSCrossRef
14.
Zurück zum Zitat Wang, S., Yin, Z.-Q., Chau, H.F., Chen, W., Wang, C., Guo, G.-C., Han, Z.-F.: Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Sci. Technol. 3, 025006 (2018)ADSCrossRef Wang, S., Yin, Z.-Q., Chau, H.F., Chen, W., Wang, C., Guo, G.-C., Han, Z.-F.: Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Sci. Technol. 3, 025006 (2018)ADSCrossRef
15.
Zurück zum Zitat Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)ADSCrossRef
16.
Zurück zum Zitat Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017)ADSCrossRef Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017)ADSCrossRef
17.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef
18.
Zurück zum Zitat Wang, X.-B.: Beating the \(PNS\) attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef Wang, X.-B.: Beating the \(PNS\) attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef
19.
Zurück zum Zitat Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef
20.
Zurück zum Zitat Ma, X., Fung, C.-H.F., Dupuis, F., Chen, K., Tamaki, K., Lo, H.-K.: Decoy state quantum key distribution with two-way classical post-processing. Phys. Rev. A 74, 032330 (2006)ADSCrossRef Ma, X., Fung, C.-H.F., Dupuis, F., Chen, K., Tamaki, K., Lo, H.-K.: Decoy state quantum key distribution with two-way classical post-processing. Phys. Rev. A 74, 032330 (2006)ADSCrossRef
21.
Zurück zum Zitat Fung, C.-H.F., Chau, H.F., Lo, H.-K.: Universal squash model for optical communications using linear optics and threshold detectors. Phys. Rev. A 84, 020303 (2011)ADSCrossRef Fung, C.-H.F., Chau, H.F., Lo, H.-K.: Universal squash model for optical communications using linear optics and threshold detectors. Phys. Rev. A 84, 020303 (2011)ADSCrossRef
22.
Zurück zum Zitat Chau, H. F., Wong, C., Huang, T., Wang, Q.: Provably secure key rate analysis of finite-key-length qudit-based decoy state quantum key distributions (2017) (in preparation) Chau, H. F., Wong, C., Huang, T., Wang, Q.: Provably secure key rate analysis of finite-key-length qudit-based decoy state quantum key distributions (2017) (in preparation)
23.
Zurück zum Zitat Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef
24.
Zurück zum Zitat Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)ADSCrossRef Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)ADSCrossRef
26.
Zurück zum Zitat He, D.-Y., Wang, S., Chen, W., Yin, Z.-Q., Qian, Y.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett. 110, 111104 (2017)ADSCrossRef He, D.-Y., Wang, S., Chen, W., Yin, Z.-Q., Qian, Y.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett. 110, 111104 (2017)ADSCrossRef
27.
Zurück zum Zitat Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef
28.
Zurück zum Zitat Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Practical round-robin differential-phase-shift quantum key distribution. N. J. Phys. 19, 033013 (2017)CrossRef Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Practical round-robin differential-phase-shift quantum key distribution. N. J. Phys. 19, 033013 (2017)CrossRef
Metadaten
Titel
Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme
verfasst von
H. F. Chau
Zhen-Qiang Yin
Shuang Wang
Wei Chen
Zheng-Fu Han
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2263-0

Weitere Artikel der Ausgabe 5/2019

Quantum Information Processing 5/2019 Zur Ausgabe

Neuer Inhalt