Skip to main content

17.11.2024 | Original Article

Chebyshev spectral approximation-based physics-informed neural network for solving higher-order nonlinear differential equations

verfasst von: Yixin Huang, Haizhou Liu, Yang Zhao, Min Fei

Erschienen in: Engineering with Computers

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physics-informed neural networks (PINNs) typically involve higher-order partial derivatives with respect to their inputs, which are too costly to compute and store by using automatic differentiation (AD) even for relatively small neural networks. This paper presents an improved kind of PINN, named CD-PINN, where a Chebyshev spectral method is introduced to replace the AD method to accelerate the computation of higher-order derivatives in PDE residual, while the AD method is still used to compute the derivatives of the PDE residual with respect to weights and biases. This method directly approximates the input-output relationship of the neural network in small subdomains by using the Chebyshev series expansion. Benefiting from the superb properties of the derivatives of the Chebyshev polynomials, the higher-order derivatives of neural networks can be computed very quickly. A series of nonlinear differential equations are solved by the CD-PINN and AD-PINN simultaneously. The results show that the CD-PINN can achieve comparable accuracy to the AD-PINN and simultaneously reduce computation time significantly. To achieve the same accuracy, the time needed by the CD-PINN is much less than that of the AD-PINN. The larger the size of the neural network, the more layers it has, and the higher the derivative order in the PDEs, the greater the advantage of the CD-PINN. This research demonstrates an alternative way to improve the training speed of PINNs and a promising approach for blending traditional numerical methods with PINNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wolinski P (2023) Adapting Newton’s method to neural networks through a summary of higher-order derivatives. arXiv preprint arXiv:2312.03885v2. Accessed 3 Feb 2024 Wolinski P (2023) Adapting Newton’s method to neural networks through a summary of higher-order derivatives. arXiv preprint arXiv:​2312.​03885v2. Accessed 3 Feb 2024
2.
Zurück zum Zitat Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364MathSciNetCrossRefMATH Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364MathSciNetCrossRefMATH
3.
Zurück zum Zitat Shen S, Shao T, Zhou K, Jiang C, Luo F, Yang Y (2022) HoD-Net: High-Order Differentiable Deep Neural Networks and Applications. Paper presented at The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22), February 22–March 1, 2022 Shen S, Shao T, Zhou K, Jiang C, Luo F, Yang Y (2022) HoD-Net: High-Order Differentiable Deep Neural Networks and Applications. Paper presented at The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22), February 22–March 1, 2022
4.
Zurück zum Zitat Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3:422–440CrossRefMATH Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3:422–440CrossRefMATH
5.
Zurück zum Zitat Hu S, Liu M, Zhang S, Dong S, Zheng R (2024) Physics-informed neural network combined with characteristic-based split for solving navier-stokes equations. Eng Appl Artif Intell 128:107453CrossRefMATH Hu S, Liu M, Zhang S, Dong S, Zheng R (2024) Physics-informed neural network combined with characteristic-based split for solving navier-stokes equations. Eng Appl Artif Intell 128:107453CrossRefMATH
6.
Zurück zum Zitat Lu L, Meng X, Mao Z, Karniadakis GE (2021) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228MathSciNetCrossRefMATH Lu L, Meng X, Mao Z, Karniadakis GE (2021) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228MathSciNetCrossRefMATH
7.
Zurück zum Zitat Lyu L, Zhang Z, Chen M, Chen J (2022) Mim: a deep mixed residual method for solving high-order partial differential equations. J Comput Phys 452(110930):110930MathSciNetCrossRefMATH Lyu L, Zhang Z, Chen M, Chen J (2022) Mim: a deep mixed residual method for solving high-order partial differential equations. J Comput Phys 452(110930):110930MathSciNetCrossRefMATH
9.
Zurück zum Zitat Kharazmi E, Zhang Z, Karniadakis GEM (2021) hp-vpinns: variational physics-informed neural networks with domain decomposition. Comput Methods Appl Mech Eng. 374:113547MathSciNetCrossRefMATH Kharazmi E, Zhang Z, Karniadakis GEM (2021) hp-vpinns: variational physics-informed neural networks with domain decomposition. Comput Methods Appl Mech Eng. 374:113547MathSciNetCrossRefMATH
10.
12.
Zurück zum Zitat Margossian CC (2019) A review of automatic differentiation and its efficient implementation. Wiley interdisciplinary reviews-data mining and knowledge discovery, vol 9. Wiley, New York Margossian CC (2019) A review of automatic differentiation and its efficient implementation. Wiley interdisciplinary reviews-data mining and knowledge discovery, vol 9. Wiley, New York
13.
Zurück zum Zitat Chiu P-H, Wong JC, Ooi C, Dao MH, Ong Y-S (2022) CAN-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentation method. Comput Methods Appl Mech Eng 395:114909CrossRefMATH Chiu P-H, Wong JC, Ooi C, Dao MH, Ong Y-S (2022) CAN-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentation method. Comput Methods Appl Mech Eng 395:114909CrossRefMATH
14.
Zurück zum Zitat Lim KL, Dutta R, Rotaru M (2022) Physics informed neural network using finite difference method. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 1828–1833 Lim KL, Dutta R, Rotaru M (2022) Physics informed neural network using finite difference method. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 1828–1833
15.
16.
Zurück zum Zitat Xiao Y, Yang LM, Du YJ, Song YX, Shu C (2023) Radial basis function-differential quadrature-based physics informed neural network for steady incompressible flows. Phys Fluids 35:073607CrossRefMATH Xiao Y, Yang LM, Du YJ, Song YX, Shu C (2023) Radial basis function-differential quadrature-based physics informed neural network for steady incompressible flows. Phys Fluids 35:073607CrossRefMATH
17.
Zurück zum Zitat Sharma R, Shankar V (2023) Accelerated training of physics-informed neural networks (pinns) using meshless discretizations. arXiv preprint arXiv:2205.09332v6. Accessed 28 Jan 2023 Sharma R, Shankar V (2023) Accelerated training of physics-informed neural networks (pinns) using meshless discretizations. arXiv preprint arXiv:​2205.​09332v6. Accessed 28 Jan 2023
18.
Zurück zum Zitat Huang Y, Zhao Y, Cao D (2021) Bending and free vibration analysis of orthotropic in-plane functionally graded plates using a chebyshev spectral approach. Compos Struct 255:112938CrossRefMATH Huang Y, Zhao Y, Cao D (2021) Bending and free vibration analysis of orthotropic in-plane functionally graded plates using a chebyshev spectral approach. Compos Struct 255:112938CrossRefMATH
19.
Zurück zum Zitat Zhao Y, Huang Y, Guo M (2017) A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on chebyshev polynomials theory. Compos Struct 168:277–284CrossRefMATH Zhao Y, Huang Y, Guo M (2017) A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on chebyshev polynomials theory. Compos Struct 168:277–284CrossRefMATH
20.
Zurück zum Zitat Huang Y, Zhao Y, Wang T, Tian H (2019) A new chebyshev spectral approach for vibration of in-plane functionally graded mindlin plates with variable thickness. Appl Math Model 74:21–42MathSciNetCrossRefMATH Huang Y, Zhao Y, Wang T, Tian H (2019) A new chebyshev spectral approach for vibration of in-plane functionally graded mindlin plates with variable thickness. Appl Math Model 74:21–42MathSciNetCrossRefMATH
21.
Zurück zum Zitat Yagci B, Filiz S, Romero LL, Ozdoganlar OB (2009) A spectral-tchebychev technique for solving linear and nonlinear beam equations. J Sound Vib 321:375–404CrossRefMATH Yagci B, Filiz S, Romero LL, Ozdoganlar OB (2009) A spectral-tchebychev technique for solving linear and nonlinear beam equations. J Sound Vib 321:375–404CrossRefMATH
23.
Zurück zum Zitat Basdevant C, Deville M, Haldenwang P, Lacroix JM, Ouazzani J, Peyret R, Orlandi P (1986) Patera AT Spectral and finite difference solutions of the Burgers equation. Comput Fluids 14(1):23–41CrossRefMATH Basdevant C, Deville M, Haldenwang P, Lacroix JM, Ouazzani J, Peyret R, Orlandi P (1986) Patera AT Spectral and finite difference solutions of the Burgers equation. Comput Fluids 14(1):23–41CrossRefMATH
24.
Zurück zum Zitat Fang Y, Wu G-Z, Wang Y-Y, Dai C-Q (2021) Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order nlse using the pinn. Nonlinear Dyn 105:603–616CrossRefMATH Fang Y, Wu G-Z, Wang Y-Y, Dai C-Q (2021) Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order nlse using the pinn. Nonlinear Dyn 105:603–616CrossRefMATH
25.
Zurück zum Zitat Tao Y, He J (2012) Multisolitons, breathers, and rogue waves for the hirota equation generated by the darboux transformation. Phys Rev 85(2):026601MATH Tao Y, He J (2012) Multisolitons, breathers, and rogue waves for the hirota equation generated by the darboux transformation. Phys Rev 85(2):026601MATH
26.
Zurück zum Zitat Zhang HH, Han SY, Fan LF, Huang D (2018) The numerical manifold method for 2D transient heat conduction problems in functionally graded materials. Eng Anal Bound Elem. 88:145–155MathSciNetCrossRefMATH Zhang HH, Han SY, Fan LF, Huang D (2018) The numerical manifold method for 2D transient heat conduction problems in functionally graded materials. Eng Anal Bound Elem. 88:145–155MathSciNetCrossRefMATH
Metadaten
Titel
Chebyshev spectral approximation-based physics-informed neural network for solving higher-order nonlinear differential equations
verfasst von
Yixin Huang
Haizhou Liu
Yang Zhao
Min Fei
Publikationsdatum
17.11.2024
Verlag
Springer London
Erschienen in
Engineering with Computers
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02073-0