Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Chemical and Physical Effects of Acoustic Bubbles

verfasst von : Kenji Okitsu, Francesca Cavalieri

Erschienen in: Sonochemical Production of Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During acoustic cavitation which comprises sequence of nucleation, growth, and collapse of bubbles, physical effects due to shockwaves, micro-jets, strong micro-stirring, etc. are produced. In addition, when bubbles were adiabatically collapsed, the temperature and pressure in collapsing bubbles attained extreme high temperature and high pressure which cause high-temperature reactions in gas and/or liquid phases of the bubble interface. Various types of radicals are also formed by the pyrolysis of solutes and/or solvents. In this chapter, chemical and physical effects of acoustic cavitation are introduced to understand characteristics of the bubbles formed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Tronson, M. Ashokkumar, F. Grieser, Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J. Phys. Chem. B 106, 11064–11068 (2002)CrossRef R. Tronson, M. Ashokkumar, F. Grieser, Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J. Phys. Chem. B 106, 11064–11068 (2002)CrossRef
2.
Zurück zum Zitat K.R. Weninger, C.G. Camara, S.J. Putterman, Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys. Rev. E 63, 016310 (2001)CrossRef K.R. Weninger, C.G. Camara, S.J. Putterman, Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys. Rev. E 63, 016310 (2001)CrossRef
3.
Zurück zum Zitat K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towata, Y. Iida, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J. Chem. Phys. 128, 184705 (2008)CrossRefPubMed K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towata, Y. Iida, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J. Chem. Phys. 128, 184705 (2008)CrossRefPubMed
4.
Zurück zum Zitat K. Yasui, Acoustic Cavitation and Bubble Dynamics, Ultrasound and Sonochemistry (Springer Briefs in Molecular Science, Springer, 2018)CrossRef K. Yasui, Acoustic Cavitation and Bubble Dynamics, Ultrasound and Sonochemistry (Springer Briefs in Molecular Science, Springer, 2018)CrossRef
5.
6.
Zurück zum Zitat Kagaku-binran, II-233-234. Ed by The Chemical Society of Japan, Maruzen, Japan (1993) Kagaku-binran, II-233-234. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)
7.
Zurück zum Zitat C. Sehgal, R.P. Steer, R.G. Sutherland, R.E. Verrall, Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation. J. Chem. Phys. 70, 2242–2248 (1979)CrossRef C. Sehgal, R.P. Steer, R.G. Sutherland, R.E. Verrall, Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation. J. Chem. Phys. 70, 2242–2248 (1979)CrossRef
8.
Zurück zum Zitat D. Peters, Ultrasound in materials chemistry. J. Mater. Chem. 6, 1605–1618 (1996)CrossRef D. Peters, Ultrasound in materials chemistry. J. Mater. Chem. 6, 1605–1618 (1996)CrossRef
9.
Zurück zum Zitat T. Tuziuti, S. Hatanaka, K. Yasui, T. Kozuka, H. Mitome, Effect of ambient-pressure reduction on multibubble sonochemiluminescence. J. Chem. Phys. 116, 6221–6227 (2002) T. Tuziuti, S. Hatanaka, K. Yasui, T. Kozuka, H. Mitome, Effect of ambient-pressure reduction on multibubble sonochemiluminescence. J. Chem. Phys. 116, 6221–6227 (2002)
10.
Zurück zum Zitat K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura, Y. Maeda, Acoustic multi-bubble cavitation in water: a new aspect of the effect of rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J. Phys. Chem. B 110, 20081–20084 (2006)CrossRefPubMed K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura, Y. Maeda, Acoustic multi-bubble cavitation in water: a new aspect of the effect of rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J. Phys. Chem. B 110, 20081–20084 (2006)CrossRefPubMed
11.
Zurück zum Zitat Kagaku-binran, II-234-235. Ed by The Chemical Society of Japan, Maruzen, Japan (1993) Kagaku-binran, II-234-235. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)
12.
Zurück zum Zitat Kagaku-binran, II-66. Ed by The Chemical Society of Japan, Maruzen, Japan (1993) Kagaku-binran, II-66. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)
13.
Zurück zum Zitat Kagaku-binran, II-156-157. Ed by The Chemical Society of Japan, Maruzen, Japan (1993) Kagaku-binran, II-156-157. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)
14.
Zurück zum Zitat K.S. Suslick, R.E. Cline, D.A. Hammerton, The Sonochemical Hot Spot. J. Am. Chem. Soc. 108, 5641–5642 (1986)CrossRef K.S. Suslick, R.E. Cline, D.A. Hammerton, The Sonochemical Hot Spot. J. Am. Chem. Soc. 108, 5641–5642 (1986)CrossRef
15.
Zurück zum Zitat V. Misik, N. Miyoshi, P. Riesz, EPR spin-trapping study of the sonolysis of H2O/D2O mixtures: Probing the temperatures of cavitation regions. J. Phys. Chem. 99, 3605–3611 (1995)CrossRef V. Misik, N. Miyoshi, P. Riesz, EPR spin-trapping study of the sonolysis of H2O/D2O mixtures: Probing the temperatures of cavitation regions. J. Phys. Chem. 99, 3605–3611 (1995)CrossRef
16.
Zurück zum Zitat B.E. Nolingk, E.A. Nepprias, Cavitation produced by Ultrasonics. Proc. Phys. Soc. B 63B, 674–684 (1950)CrossRef B.E. Nolingk, E.A. Nepprias, Cavitation produced by Ultrasonics. Proc. Phys. Soc. B 63B, 674–684 (1950)CrossRef
17.
Zurück zum Zitat E.J. Hart, A. Henglein, Sonolytic decomposition of nitrous oxide in aqueous solution. J. Phys. Chem. 90, 5992–5995 (1986)CrossRef E.J. Hart, A. Henglein, Sonolytic decomposition of nitrous oxide in aqueous solution. J. Phys. Chem. 90, 5992–5995 (1986)CrossRef
18.
Zurück zum Zitat E.J. Hart, C.-H. Fischer, A. Henglein, Sonolysis of hydrocarbons in aqueous solution. Radiat. Phys. Chem. 36, 511–516 (1990) E.J. Hart, C.-H. Fischer, A. Henglein, Sonolysis of hydrocarbons in aqueous solution. Radiat. Phys. Chem. 36, 511–516 (1990)
19.
Zurück zum Zitat J.B. Jeffries, R.A. Copeland, E.B. Flint, K.S. Suslick, Thermal equilibration during cavitation. Science 256, 248 (1992)CrossRefPubMed J.B. Jeffries, R.A. Copeland, E.B. Flint, K.S. Suslick, Thermal equilibration during cavitation. Science 256, 248 (1992)CrossRefPubMed
20.
Zurück zum Zitat K.S. Suslick, K.A. Kemper, Pressure measurements during acoustic cavitation by sonoluminescence, in Bubble Dynamics and Interface Phenomena, ed. by J.R. Blake (Kluwer, Dordrecht, Netherlands, 1994), pp. 311–320CrossRef K.S. Suslick, K.A. Kemper, Pressure measurements during acoustic cavitation by sonoluminescence, in Bubble Dynamics and Interface Phenomena, ed. by J.R. Blake (Kluwer, Dordrecht, Netherlands, 1994), pp. 311–320CrossRef
21.
Zurück zum Zitat V. Misik, P. Riesz, EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason. Sonochem. 3, 25–37 (1996)CrossRef V. Misik, P. Riesz, EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason. Sonochem. 3, 25–37 (1996)CrossRef
22.
Zurück zum Zitat A. Tauber, G. Mark, H.-P. Schuchmann, C. von Sonntag, Sonolysis of tert-butyl alcohol in aqueous solution. J. Chem. Soc., Perkin Trans. 2, 1129–1135 (1999)CrossRef A. Tauber, G. Mark, H.-P. Schuchmann, C. von Sonntag, Sonolysis of tert-butyl alcohol in aqueous solution. J. Chem. Soc., Perkin Trans. 2, 1129–1135 (1999)CrossRef
23.
Zurück zum Zitat M. Ashokkumar, F. Grieser, A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J. Am. Chem. Soc. 127, 5326–5327 (2005)CrossRefPubMed M. Ashokkumar, F. Grieser, A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J. Am. Chem. Soc. 127, 5326–5327 (2005)CrossRefPubMed
24.
Zurück zum Zitat N.C. Eddingsaas, K.S. Suslick, Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J. Am. Chem. Soc. 129, 3838–3839 (2007)CrossRefPubMed N.C. Eddingsaas, K.S. Suslick, Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J. Am. Chem. Soc. 129, 3838–3839 (2007)CrossRefPubMed
25.
Zurück zum Zitat T. Kimura, T. Sakamoto, J.-M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction. Ultrason. Sonochem. 3, S157–S161 (1996)CrossRef T. Kimura, T. Sakamoto, J.-M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction. Ultrason. Sonochem. 3, S157–S161 (1996)CrossRef
26.
Zurück zum Zitat K. Makino, M.M. Mossoba, P. Riesz, Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 87, 1369 (1983)CrossRef K. Makino, M.M. Mossoba, P. Riesz, Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 87, 1369 (1983)CrossRef
27.
Zurück zum Zitat X. Fang, G. Mark, C. von Sonntag, OH radical formation by ultrasound in aqueous solutions. Part I: The chemistry underlying the terephthalate dosimeter. Ultrason. Sonochem. 3, 57–63 (1996) X. Fang, G. Mark, C. von Sonntag, OH radical formation by ultrasound in aqueous solutions. Part I: The chemistry underlying the terephthalate dosimeter. Ultrason. Sonochem. 3, 57–63 (1996)
28.
Zurück zum Zitat A.K. Jana, S.N. Chatterjee, Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter. Ultrason. Sonochem. 2, S87–S91 (1995)CrossRef A.K. Jana, S.N. Chatterjee, Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter. Ultrason. Sonochem. 2, S87–S91 (1995)CrossRef
29.
Zurück zum Zitat E.J. Hart, A. Henglein, Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J. Phys. Chem. 89, 4342–4347 (1985)CrossRef E.J. Hart, A. Henglein, Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J. Phys. Chem. 89, 4342–4347 (1985)CrossRef
30.
Zurück zum Zitat H. Nomura, S. Koda, K. Yasuda, Y. Kojima, Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin. Ultrason. Sonochem. 3, S153–156 (1996)CrossRef H. Nomura, S. Koda, K. Yasuda, Y. Kojima, Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin. Ultrason. Sonochem. 3, S153–156 (1996)CrossRef
31.
Zurück zum Zitat C.A. Wakeford, R. Blackburn, P.D. Lickiss, Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason. Sonochem. 6, 141–148 (1999) C.A. Wakeford, R. Blackburn, P.D. Lickiss, Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason. Sonochem. 6, 141–148 (1999)
32.
Zurück zum Zitat V. Misik, P. Riesz, Nitric oxide formation by ultrasound in aqueous solutions. J. Phys. Chem. 100, 17986–17994 (1996)CrossRef V. Misik, P. Riesz, Nitric oxide formation by ultrasound in aqueous solutions. J. Phys. Chem. 100, 17986–17994 (1996)CrossRef
33.
Zurück zum Zitat J. Berlan, T.J. Mason, Sonochemistry: from research laboratories to industrial plants. Ultrasonics 30, 203–212 (1992)CrossRef J. Berlan, T.J. Mason, Sonochemistry: from research laboratories to industrial plants. Ultrasonics 30, 203–212 (1992)CrossRef
34.
Zurück zum Zitat S. Koda, T. Kimura, T. Kondo, H. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrasonics Sonochem. 10, 149 (2003)CrossRef S. Koda, T. Kimura, T. Kondo, H. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrasonics Sonochem. 10, 149 (2003)CrossRef
35.
Zurück zum Zitat T. Tuziuti, K. Yasui, Y. Iida, Spatial study on a multibubble system for sonochemistry by laser-light scattering. Ultrasonics Sonochem. 12, 73–77 (2005)CrossRef T. Tuziuti, K. Yasui, Y. Iida, Spatial study on a multibubble system for sonochemistry by laser-light scattering. Ultrasonics Sonochem. 12, 73–77 (2005)CrossRef
36.
Zurück zum Zitat T. Kozuka, S. Hatanaka, K. Yasui, H. Mitome, Observation of a Sonoluminescing bubble using a stroboscope. Jpn. J. Appl. Phys. 39-1-5-B, 2967 (2000) T. Kozuka, S. Hatanaka, K. Yasui, H. Mitome, Observation of a Sonoluminescing bubble using a stroboscope. Jpn. J. Appl. Phys. 39-1-5-B, 2967 (2000)
37.
Zurück zum Zitat A. Henglein, M. Gutierrez, Sonochemistry and sonoluminescence: effects of external pressure. J. Phys. Chem. 97, 158–162 (1993)CrossRef A. Henglein, M. Gutierrez, Sonochemistry and sonoluminescence: effects of external pressure. J. Phys. Chem. 97, 158–162 (1993)CrossRef
38.
Zurück zum Zitat Y. Asakura, T. Nishida, T. Matsuoka, S. Koda, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 15, 244–250 (2008) Y. Asakura, T. Nishida, T. Matsuoka, S. Koda, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 15, 244–250 (2008)
39.
Zurück zum Zitat A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biol. 48, 251–258 (1985) A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biol. 48, 251–258 (1985)
40.
Zurück zum Zitat M. Ashokkumar, F. Grieser, Single bubble sonoluminescence—a chemist’s overview. Chem. Phys. Chem. 5, 439–448 (2004)CrossRefPubMed M. Ashokkumar, F. Grieser, Single bubble sonoluminescence—a chemist’s overview. Chem. Phys. Chem. 5, 439–448 (2004)CrossRefPubMed
41.
Zurück zum Zitat K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: reactivities of reducing species formed by alcohol sonolysis. Ultrason. Sonochem. 31, 456–462 (2016)CrossRefPubMed K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: reactivities of reducing species formed by alcohol sonolysis. Ultrason. Sonochem. 31, 456–462 (2016)CrossRefPubMed
42.
Zurück zum Zitat A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biology 48, 251–258 (1985) A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biology 48, 251–258 (1985)
43.
Zurück zum Zitat A.E. Alegria, Y. Lion, T. Kondo, P. Riesz, Sonolysis of aqueous surfactant solutions: probing the interfacial region of cavitation bubbles by spin trapping. J. Phys. Chem. 93, 4908–4913 (1989)CrossRef A.E. Alegria, Y. Lion, T. Kondo, P. Riesz, Sonolysis of aqueous surfactant solutions: probing the interfacial region of cavitation bubbles by spin trapping. J. Phys. Chem. 93, 4908–4913 (1989)CrossRef
44.
Zurück zum Zitat J.Z. Sostaric, P. Mulvaney, F. Grieser, Sonochemical dissolution of MnO2 colloids. J. Chem. Soc. Faraday Trans. 91, 2843–2846 (1995)CrossRef J.Z. Sostaric, P. Mulvaney, F. Grieser, Sonochemical dissolution of MnO2 colloids. J. Chem. Soc. Faraday Trans. 91, 2843–2846 (1995)CrossRef
45.
Zurück zum Zitat B. Yim, H. Okuno, Y. Nagata, R. Nishimura, Y. Maeda, Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles. Ultrason. Sonochem. 9, 209–213 (2002)CrossRefPubMed B. Yim, H. Okuno, Y. Nagata, R. Nishimura, Y. Maeda, Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles. Ultrason. Sonochem. 9, 209–213 (2002)CrossRefPubMed
46.
Zurück zum Zitat G.J. Price, M. Ashokkumar, F. Grieser, Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. J. Am. Chem. Soc. 126, 2755–2762 (2004)CrossRefPubMed G.J. Price, M. Ashokkumar, F. Grieser, Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. J. Am. Chem. Soc. 126, 2755–2762 (2004)CrossRefPubMed
47.
Zurück zum Zitat K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason. Sonochem. 12, 255–262 (2005)CrossRefPubMed K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason. Sonochem. 12, 255–262 (2005)CrossRefPubMed
48.
Zurück zum Zitat B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, Y. Maeda, Sonochemical degradation of various monocyclic aromatic compounds: relation between hydrophobicities of organic compounds and the decomposition rates. Ultrason. Sonochem. 15, 478–483 (2008)CrossRefPubMed B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, Y. Maeda, Sonochemical degradation of various monocyclic aromatic compounds: relation between hydrophobicities of organic compounds and the decomposition rates. Ultrason. Sonochem. 15, 478–483 (2008)CrossRefPubMed
49.
Zurück zum Zitat K.S. Suslick, J.J. Gawlenowski, P.F. Schubert, H.H. Wang, Alkane sonochemistry. J. Phys. Chem. 87, 2299–2301 (1983)CrossRef K.S. Suslick, J.J. Gawlenowski, P.F. Schubert, H.H. Wang, Alkane sonochemistry. J. Phys. Chem. 87, 2299–2301 (1983)CrossRef
50.
Zurück zum Zitat K. Okitsu, H. Nakamura, N. Takenaka, H. Bandow, Y. Maeda, Y. Nagata, Sonochemical reactions occurring in organic solvents: reaction kinetics and reaction site of radical trapping with 1,1-Diphenyl-2-Picrylhydrazyl. Res. Chem. Intermediates 30, 763–774 (2004)CrossRef K. Okitsu, H. Nakamura, N. Takenaka, H. Bandow, Y. Maeda, Y. Nagata, Sonochemical reactions occurring in organic solvents: reaction kinetics and reaction site of radical trapping with 1,1-Diphenyl-2-Picrylhydrazyl. Res. Chem. Intermediates 30, 763–774 (2004)CrossRef
51.
Zurück zum Zitat Y. Mizukoshi, H. Nakamura, H. Bandow, Y. Maeda, Y. Nagata, Sonolysis of organic liquid: effect of vapour pressure and evaporation rate. Ultrasonics Sonochem. 6, 203–209 (1999)CrossRef Y. Mizukoshi, H. Nakamura, H. Bandow, Y. Maeda, Y. Nagata, Sonolysis of organic liquid: effect of vapour pressure and evaporation rate. Ultrasonics Sonochem. 6, 203–209 (1999)CrossRef
52.
Zurück zum Zitat M. Atobe, T. Nonaka, Ultrasonic effects on electro organic processes. Cavitation threshold values of ultrasound-oscillating power, Chem. Lett. 323–324 (1997) M. Atobe, T. Nonaka, Ultrasonic effects on electro organic processes. Cavitation threshold values of ultrasound-oscillating power, Chem. Lett. 323–324 (1997)
53.
Zurück zum Zitat T. Tuziuti, K. Yasui, M. Sivakumar, Y. Iida, N. Miyoshi, Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J. Phys. Chem. A 109, 4869–4872 (2005)CrossRefPubMed T. Tuziuti, K. Yasui, M. Sivakumar, Y. Iida, N. Miyoshi, Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J. Phys. Chem. A 109, 4869–4872 (2005)CrossRefPubMed
54.
Zurück zum Zitat Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason. Sonochem. 15, 995–1000 (2008)CrossRefPubMed Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason. Sonochem. 15, 995–1000 (2008)CrossRefPubMed
55.
Zurück zum Zitat K. Yamamoto, P.M. King, X. Wu, T.J. Mason, E.M. Joyce, Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason. Sonochem. 24, 165–171 (2015)CrossRefPubMed K. Yamamoto, P.M. King, X. Wu, T.J. Mason, E.M. Joyce, Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason. Sonochem. 24, 165–171 (2015)CrossRefPubMed
56.
Zurück zum Zitat G. Portenlanger, H. Heusinger, The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason. Sonochem. 4, 127–130 (1997)CrossRefPubMed G. Portenlanger, H. Heusinger, The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason. Sonochem. 4, 127–130 (1997)CrossRefPubMed
57.
Zurück zum Zitat S. Koda, K. Taguchi, K. Futamura, Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrason. Sonochem. 18, 276–281 (2011)CrossRefPubMed S. Koda, K. Taguchi, K. Futamura, Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrason. Sonochem. 18, 276–281 (2011)CrossRefPubMed
58.
Zurück zum Zitat L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, H. Bandow, A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 101, 5394–5401 (2010)CrossRef L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, H. Bandow, A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 101, 5394–5401 (2010)CrossRef
59.
Zurück zum Zitat K.S. Suslick, S.J. Doktycz, The sonochemistry of Zn powder. J. Am. Chem. Soc. 111, 2342–2344 (1989)CrossRef K.S. Suslick, S.J. Doktycz, The sonochemistry of Zn powder. J. Am. Chem. Soc. 111, 2342–2344 (1989)CrossRef
60.
Zurück zum Zitat H.-M. Hung, M.R. Hoffmann, Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ. Sci. Technol. 32, 3011–3016 (1998)CrossRef H.-M. Hung, M.R. Hoffmann, Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ. Sci. Technol. 32, 3011–3016 (1998)CrossRef
Metadaten
Titel
Chemical and Physical Effects of Acoustic Bubbles
verfasst von
Kenji Okitsu
Francesca Cavalieri
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96734-9_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.