Skip to main content

2018 | OriginalPaper | Buchkapitel

Chemical Bulk Properties of Biomaterials

verfasst von : Matthias Schnabelrauch

Erschienen in: Biomaterials in Clinical Practice

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomaterials are made from different classes of known materials including metals and alloys, ceramics, glasses, as well as natural and synthetic polymers. This great variety of materials is a result of the different application profiles, biomaterials normally have to fulfil in the body. The basis for the specific properties of a distinct biomaterial is its composition and structure at an atomic and molecular level determining the chemical nature and finally the behaviour of these materials in a living organism. In this chapter it is aimed to introduce the fundamental concepts describing the atomic bondings and the corresponding molecular structures of the main classes of material. Main correlations between these molecular structures of materials and their resulting chemical behaviour will be discussed to better understand and predict the properties of those materials with regard to their use in contact with the living matter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002) Molecular biology of the cell. Garland Science, New York Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002) Molecular biology of the cell. Garland Science, New York
Zurück zum Zitat Angelini E, Caputo A, Zucchi F (2002) Degradation processes on metallic surfaces. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 297–324CrossRef Angelini E, Caputo A, Zucchi F (2002) Degradation processes on metallic surfaces. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 297–324CrossRef
Zurück zum Zitat FW Billmeyer Jr (1984) Textbook of polymer science. Wiley, New York FW Billmeyer Jr (1984) Textbook of polymer science. Wiley, New York
Zurück zum Zitat Brauer DS (2015) Bioactive glasses—structure and properties. Angew Chem Int Ed 54:4160–4181CrossRef Brauer DS (2015) Bioactive glasses—structure and properties. Angew Chem Int Ed 54:4160–4181CrossRef
Zurück zum Zitat Brunski JB (2004) Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 137–153 Brunski JB (2004) Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 137–153
Zurück zum Zitat Carrodeguas RG, De Aza S (2011) α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomaterialia 3536–3546 Carrodeguas RG, De Aza S (2011) α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomaterialia 3536–3546
Zurück zum Zitat Cigada, A Chiesa R, Pinasco MR, Hisatsune K (2002) Metallic materials. In: Barbucci R (ed) Integrated biomaterials science, Kluwer Academic/Plenum Press, New York, pp 257–296 Cigada, A Chiesa R, Pinasco MR, Hisatsune K (2002) Metallic materials. In: Barbucci R (ed) Integrated biomaterials science, Kluwer Academic/Plenum Press, New York, pp 257–296
Zurück zum Zitat Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia 10(11):4561–4573CrossRef Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia 10(11):4561–4573CrossRef
Zurück zum Zitat Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef
Zurück zum Zitat Cooke FW (2004) Bulk properties of materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 23–32 Cooke FW (2004) Bulk properties of materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 23–32
Zurück zum Zitat Cooper SL, Visser SA, Hergenrother RW, Lamba NMK (2004) Polymers. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 67–79 Cooper SL, Visser SA, Hergenrother RW, Lamba NMK (2004) Polymers. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 67–79
Zurück zum Zitat De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945CrossRef De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945CrossRef
Zurück zum Zitat Dee KC, Puleo DA, Bizios R (2002) An introduction to biomaterial interactions. Wiley-Lyss, HobokenCrossRef Dee KC, Puleo DA, Bizios R (2002) An introduction to biomaterial interactions. Wiley-Lyss, HobokenCrossRef
Zurück zum Zitat Dorozhkin SV (2011) Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 2011, 1, 1–53 Dorozhkin SV (2011) Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 2011, 1, 1–53
Zurück zum Zitat Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910CrossRef Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910CrossRef
Zurück zum Zitat Doppalapudi S, Katiyar S, Domb AJ, Khan W (2015) Biodegradable natural polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 32–66 Doppalapudi S, Katiyar S, Domb AJ, Khan W (2015) Biodegradable natural polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 32–66
Zurück zum Zitat Dorozhkin SV (2012) Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 8:963–977CrossRef Dorozhkin SV (2012) Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 8:963–977CrossRef
Zurück zum Zitat Dräger G, Krause A, Möller L, Dumitriu S (2011) Carbohydrates. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers. Wiley-VCH, Weinheim, pp 155–193CrossRef Dräger G, Krause A, Möller L, Dumitriu S (2011) Carbohydrates. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers. Wiley-VCH, Weinheim, pp 155–193CrossRef
Zurück zum Zitat Gadow R, Kern F (2010) Novel zirconia–alumina nanocomposites combining high strength and toughness. Adv Eng Mater 12:1220–1223CrossRef Gadow R, Kern F (2010) Novel zirconia–alumina nanocomposites combining high strength and toughness. Adv Eng Mater 12:1220–1223CrossRef
Zurück zum Zitat Gagner JE, Kim W, Chaikof EL (2014) Designing protein-based biomaterials for medical applications. Acta Biomater 10:1542–1557CrossRef Gagner JE, Kim W, Chaikof EL (2014) Designing protein-based biomaterials for medical applications. Acta Biomater 10:1542–1557CrossRef
Zurück zum Zitat Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160CrossRef Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160CrossRef
Zurück zum Zitat Göpferich A (1997) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 451–471 Göpferich A (1997) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 451–471
Zurück zum Zitat Gray E, Hogwood J, Mulloy B (2012) The anticoagulant and antuthrombotic mechanisms of heparin. In: Lever R, Mulloy B, Page CP (eds) Heparin-a century of progress. Handbook of experimental pharmacology, vol 207. Springer, Berlin, pp 43–61 Gray E, Hogwood J, Mulloy B (2012) The anticoagulant and antuthrombotic mechanisms of heparin. In: Lever R, Mulloy B, Page CP (eds) Heparin-a century of progress. Handbook of experimental pharmacology, vol 207. Springer, Berlin, pp 43–61
Zurück zum Zitat Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef
Zurück zum Zitat Hench LL (1999) Bioactive glasses and glass-ceramics. Mat Sci Forum 293:27–64CrossRef Hench LL (1999) Bioactive glasses and glass-ceramics. Mat Sci Forum 293:27–64CrossRef
Zurück zum Zitat Hench LL, Best S (2004) Ceramics, glasses, and glass-ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 153–170 Hench LL, Best S (2004) Ceramics, glasses, and glass-ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 153–170
Zurück zum Zitat Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455CrossRef Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455CrossRef
Zurück zum Zitat Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomaterials 9:4457–4486CrossRef Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomaterials 9:4457–4486CrossRef
Zurück zum Zitat Kaplan DL (1989) Introduction to biopolymers from renewable resources. In: Kaplan DL (ed) biopolymers from renewable resources. Springer, Berlin, pp 1–29 Kaplan DL (1989) Introduction to biopolymers from renewable resources. In: Kaplan DL (ed) biopolymers from renewable resources. Springer, Berlin, pp 1–29
Zurück zum Zitat Keenan TR (1997) Gelatin. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 307–317 Keenan TR (1997) Gelatin. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 307–317
Zurück zum Zitat Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298CrossRef Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298CrossRef
Zurück zum Zitat Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8:1359–1384CrossRef Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8:1359–1384CrossRef
Zurück zum Zitat Khan W, Yadav D, Domb AJ, Kumar N (2011) Collagen. In: Domb AJ, Kumar N, Ezra A (eds) Biodegradable polymers in clinical use and clinical development. Wiley, Hoboken, pp 61–89 Khan W, Yadav D, Domb AJ, Kumar N (2011) Collagen. In: Domb AJ, Kumar N, Ezra A (eds) Biodegradable polymers in clinical use and clinical development. Wiley, Hoboken, pp 61–89
Zurück zum Zitat Krajewski A, Ravaglioli A (2002) Bioceramics and biological glasses. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 189–254CrossRef Krajewski A, Ravaglioli A (2002) Bioceramics and biological glasses. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 189–254CrossRef
Zurück zum Zitat Krueger O (2004) Kunststoffe. In: Bargel H-J, Schulze G (eds) Werkstoffkunde. Springer, Berlin, pp 304–335 Krueger O (2004) Kunststoffe. In: Bargel H-J, Schulze G (eds) Werkstoffkunde. Springer, Berlin, pp 304–335
Zurück zum Zitat Lee HB, Khang G, Lee JH (2003) Polymeric biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRS Press, Boca Raton, pp 55–77 Lee HB, Khang G, Lee JH (2003) Polymeric biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRS Press, Boca Raton, pp 55–77
Zurück zum Zitat Liu B, Lun DX (2012) Current application of β-tricalcium phosphate composites in orthopaedics. Orthopaedic Surg 4:139–144CrossRef Liu B, Lun DX (2012) Current application of β-tricalcium phosphate composites in orthopaedics. Orthopaedic Surg 4:139–144CrossRef
Zurück zum Zitat Marek M (2009) Metal corrosion. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 155–181CrossRef Marek M (2009) Metal corrosion. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 155–181CrossRef
Zurück zum Zitat Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903CrossRef Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903CrossRef
Zurück zum Zitat Omidian H, Park K (2010) Introduction to hydrogels. In: Ottenbrite RM (ed) Biomedical applications of hydrogels handbook. Springer, New York, pp 1–16 Omidian H, Park K (2010) Introduction to hydrogels. In: Ottenbrite RM (ed) Biomedical applications of hydrogels handbook. Springer, New York, pp 1–16
Zurück zum Zitat Parisi OI, Curcio M, Puoci F (2015) Polymer chemistry and synthetic polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 1–31 Parisi OI, Curcio M, Puoci F (2015) Polymer chemistry and synthetic polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 1–31
Zurück zum Zitat Park J (2008) Bioceramics: Properties, characterizations, and applications. Springer, New York Park J (2008) Bioceramics: Properties, characterizations, and applications. Springer, New York
Zurück zum Zitat Park JB, Kim YK (2003) Metallic biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRC Press, Boca Raton, pp 1–20 Park JB, Kim YK (2003) Metallic biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRC Press, Boca Raton, pp 1–20
Zurück zum Zitat Piconi C, Maccauro G, Muratori F, Brach Del Prever E (2003) Alumina and zirconia ceramics in joint replacements. J Appl Biomat Biomech 1:19–32 Piconi C, Maccauro G, Muratori F, Brach Del Prever E (2003) Alumina and zirconia ceramics in joint replacements. J Appl Biomat Biomech 1:19–32
Zurück zum Zitat Pilliar RM (2009) Metallic biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 41–81CrossRef Pilliar RM (2009) Metallic biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 41–81CrossRef
Zurück zum Zitat Pourbaix M (1984) Electrochemical corrosion of metallic biomaterials. Biomaterials 5:122–134CrossRef Pourbaix M (1984) Electrochemical corrosion of metallic biomaterials. Biomaterials 5:122–134CrossRef
Zurück zum Zitat Reifenrath J, Bormann D, Meyer-Lindenberg A (2011) Magnesium alloys as promising degradable implant materials in orthopaedic research. In: Czerwinski F (ed) Magnesium alloys—corrosion and surface treatments. InTech, Rijeka, pp 93–108 Reifenrath J, Bormann D, Meyer-Lindenberg A (2011) Magnesium alloys as promising degradable implant materials in orthopaedic research. In: Czerwinski F (ed) Magnesium alloys—corrosion and surface treatments. InTech, Rijeka, pp 93–108
Zurück zum Zitat Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796CrossRef Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796CrossRef
Zurück zum Zitat Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621CrossRef Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621CrossRef
Zurück zum Zitat Schnabelrauch M, Scharnweber D, Schiller J (2013) Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr Med Chem 20:2501–2523CrossRef Schnabelrauch M, Scharnweber D, Schiller J (2013) Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr Med Chem 20:2501–2523CrossRef
Zurück zum Zitat Sewald N, Jakubke H-D (2002) Peptides: Chemistry and biology. Wiley-VCH, WeinheimCrossRef Sewald N, Jakubke H-D (2002) Peptides: Chemistry and biology. Wiley-VCH, WeinheimCrossRef
Zurück zum Zitat Silver FH, Garg AT (1997) Collagen: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 319–346 Silver FH, Garg AT (1997) Collagen: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 319–346
Zurück zum Zitat Srichana T, Domb AJ (2009) Polymeric biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 83–119CrossRef Srichana T, Domb AJ (2009) Polymeric biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 83–119CrossRef
Zurück zum Zitat Tsuji H (2010) Hydrolytic degradation. In: Auras R, Lim L-T, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp 345–381 Tsuji H (2010) Hydrolytic degradation. In: Auras R, Lim L-T, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp 345–381
Zurück zum Zitat Turner IG (2009) Ceramics and glasses. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 3–39CrossRef Turner IG (2009) Ceramics and glasses. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 3–39CrossRef
Zurück zum Zitat Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408CrossRef Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408CrossRef
Zurück zum Zitat Virtanen S (2008) Corrosion of biomedical implant materials. Corrosion of biomedical implant materials 26:147–171 Virtanen S (2008) Corrosion of biomedical implant materials. Corrosion of biomedical implant materials 26:147–171
Zurück zum Zitat Vogel W, Höland W (1987) The development of bioglass ceramics for medical applications. Angew Chem Int Ed 26:527–544CrossRef Vogel W, Höland W (1987) The development of bioglass ceramics for medical applications. Angew Chem Int Ed 26:527–544CrossRef
Zurück zum Zitat Vogler EA (2004) Role of water in biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 59–65 Vogler EA (2004) Role of water in biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 59–65
Zurück zum Zitat Volpi N (2006) Therapeutic applications of glycosaminoglycans. Curr Med Chem 13:1799–1810CrossRef Volpi N (2006) Therapeutic applications of glycosaminoglycans. Curr Med Chem 13:1799–1810CrossRef
Zurück zum Zitat Weisel JW, Cederholm-Williams SA (1997) Fibrinogen and fibrin: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 347–365 Weisel JW, Cederholm-Williams SA (1997) Fibrinogen and fibrin: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 347–365
Zurück zum Zitat Williams DF, Williams RL (2004) Degradative effects of the biological environment on metals and ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 430–439 Williams DF, Williams RL (2004) Degradative effects of the biological environment on metals and ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 430–439
Zurück zum Zitat Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817CrossRef Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817CrossRef
Zurück zum Zitat Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72CrossRef Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72CrossRef
Zurück zum Zitat Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 127–137 Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 127–137
Metadaten
Titel
Chemical Bulk Properties of Biomaterials
verfasst von
Matthias Schnabelrauch
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68025-5_15

Neuer Inhalt