Skip to main content

2021 | OriginalPaper | Buchkapitel

Chemical, Gas and Optical Sensors Based on Conducting Polymers

verfasst von : Subramanian Nellaiappan, K. S. Shalini Devi, Stalin Selvaraj, Uma Maheswari Krishnan, Jatinder Vir Yakhmi

Erschienen in: Advances in Hybrid Conducting Polymer Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensing technology has evolved from large systems with immovable components to flexible wearable devices capable of non-invasive and location-independent detection. With the demand for portable systems capable of real-time monitoring and accurate detection at ambient conditions increasing in every sector, there arises a need to transform or replace the conventional sensing elements with superior alternatives. Conducting polymers have unique features of processability and flexibility that make them prime candidates for developing new and advanced wearable devices. They represent a promising class of materials for sensing applications whose true potential is yet to be harnessed for device fabrication. Conducting polymers possess several advantages for use as sensing materials. These include their ability to respond to chemical and gaseous species through a change in their conductance at ambient conditions, large scale production and tunable electrical properties. This chapter focuses on the advances made in the development of conducting polymer-based sensors to detect chemical molecules, gaseous analytes, and optical detection of molecules of interest. The use of hybrid conducting polymer systems incorporating nanomaterials and metal oxides towards sensing pollutants, pharmaceuticals, microbes, volatile gases in the environment and breath, and clinically relevant biomarkers has been discussed in detail. The challenges involved in conducting polymer-based systems and the potential for the evolution of this class of sensors by integrating emerging technologies are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review 25(1), 29–46 (2013) Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review 25(1), 29–46 (2013)
2.
Zurück zum Zitat Stetter, J.R., Penrose, W.R., Yao, S.: Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150(2), S11 (2003)CrossRef Stetter, J.R., Penrose, W.R., Yao, S.: Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150(2), S11 (2003)CrossRef
3.
Zurück zum Zitat Hall, E.A.H.: Overview of biosensors. In: Biosensors and Chemical Sensors, pp. 1–14. American Chemical Society (1992) Hall, E.A.H.: Overview of biosensors. In: Biosensors and Chemical Sensors, pp. 1–14. American Chemical Society (1992)
4.
Zurück zum Zitat Justino, C.I.L., et al.: Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal. Chem. 68, 2–17 (2015)CrossRef Justino, C.I.L., et al.: Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal. Chem. 68, 2–17 (2015)CrossRef
5.
Zurück zum Zitat Bourgeois, W., et al.: The use of sensor arrays for environmental monitoring: interests and limitations. J. Environ. Monit. 5(6), 852–860 (2003)CrossRef Bourgeois, W., et al.: The use of sensor arrays for environmental monitoring: interests and limitations. J. Environ. Monit. 5(6), 852–860 (2003)CrossRef
6.
Zurück zum Zitat Shrivastava, S., Jadon, N., Jain, R.: Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 82, 55–67 (2016)CrossRef Shrivastava, S., Jadon, N., Jain, R.: Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 82, 55–67 (2016)CrossRef
7.
Zurück zum Zitat Chen, H.-I., Chou, Y.-I., Chu, C.-Y.: A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating. Sens. Actuators B: Chem. 85(1), 10–18 (2002)CrossRef Chen, H.-I., Chou, Y.-I., Chu, C.-Y.: A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating. Sens. Actuators B: Chem. 85(1), 10–18 (2002)CrossRef
8.
Zurück zum Zitat Kannan, P.K., et al.: Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32), 13293–13312 (2015)CrossRef Kannan, P.K., et al.: Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32), 13293–13312 (2015)CrossRef
9.
Zurück zum Zitat Partridge, A.C., Jansen, M.L., Arnold, W.M.: Conducting polymer-based sensors. Mater. Sci. Eng., C 12(1), 37–42 (2000)CrossRef Partridge, A.C., Jansen, M.L., Arnold, W.M.: Conducting polymer-based sensors. Mater. Sci. Eng., C 12(1), 37–42 (2000)CrossRef
10.
Zurück zum Zitat Naveen, M.H., Gurudatt, N.G., Shim, Y.-B.: Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017)CrossRef Naveen, M.H., Gurudatt, N.G., Shim, Y.-B.: Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017)CrossRef
11.
Zurück zum Zitat Yoon, H., Jang, J.: Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19(10), 1567–1576 (2009)CrossRef Yoon, H., Jang, J.: Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19(10), 1567–1576 (2009)CrossRef
12.
Zurück zum Zitat MacDiarmid, A.G.: Synthetic metals: a novel role for organic polymers (nobel lecture). Angew. Chem. Int. Ed. 40, 2581–2590 (2001)CrossRef MacDiarmid, A.G.: Synthetic metals: a novel role for organic polymers (nobel lecture). Angew. Chem. Int. Ed. 40, 2581–2590 (2001)CrossRef
13.
Zurück zum Zitat Chandrasekhar, P.: Conducting Polymers and Other New Electronically Conductive Materials Including Carbon Nanotubes and Graphene: Fundamentals and Applications. Springer, Berlin (2018) Chandrasekhar, P.: Conducting Polymers and Other New Electronically Conductive Materials Including Carbon Nanotubes and Graphene: Fundamentals and Applications. Springer, Berlin (2018)
14.
Zurück zum Zitat Hu, J., Liu, S.: Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43(20), 8315–8330 (2010)CrossRef Hu, J., Liu, S.: Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43(20), 8315–8330 (2010)CrossRef
15.
Zurück zum Zitat Tourillon, G., Garnier, F.: Effect of dopant on the physicochemical and electrical properties of organic conducting polymers. J. Phys. Chem. 87(13), 2289–2292 (1983)CrossRef Tourillon, G., Garnier, F.: Effect of dopant on the physicochemical and electrical properties of organic conducting polymers. J. Phys. Chem. 87(13), 2289–2292 (1983)CrossRef
16.
Zurück zum Zitat Arshak, K., et al.: Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens. J. 9, 1942–1951 (2009)CrossRef Arshak, K., et al.: Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens. J. 9, 1942–1951 (2009)CrossRef
17.
Zurück zum Zitat Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef
18.
Zurück zum Zitat Persaud, K.C.: Polymers for chemical sensing. Mater. Today 8(4), 38–44 (2005)CrossRef Persaud, K.C.: Polymers for chemical sensing. Mater. Today 8(4), 38–44 (2005)CrossRef
19.
Zurück zum Zitat Ivanova, E.V., et al.: Evaluation of redox mediators for amperometric biosensors: Ru-complex modified carbon-paste/enzyme electrodes. Bioelectrochemistry 60(1), 65–71 (2003)MathSciNetCrossRef Ivanova, E.V., et al.: Evaluation of redox mediators for amperometric biosensors: Ru-complex modified carbon-paste/enzyme electrodes. Bioelectrochemistry 60(1), 65–71 (2003)MathSciNetCrossRef
20.
Zurück zum Zitat Wenjuan, Y., et al.: Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: application to the determination of thrombin and anti-cholera toxinantibody. Biosens. Bioelectron. 42, 556–562 (2013)CrossRef Wenjuan, Y., et al.: Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: application to the determination of thrombin and anti-cholera toxinantibody. Biosens. Bioelectron. 42, 556–562 (2013)CrossRef
21.
Zurück zum Zitat Lange, U., Roznyatovskaya, N.V., Mirsky, V.M.: Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)CrossRef Lange, U., Roznyatovskaya, N.V., Mirsky, V.M.: Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)CrossRef
22.
Zurück zum Zitat Teles, F.R.R., Fonseca, L.P.: Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater. Sci. Eng., C 28(8), 1530–1543 (2008)CrossRef Teles, F.R.R., Fonseca, L.P.: Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater. Sci. Eng., C 28(8), 1530–1543 (2008)CrossRef
23.
Zurück zum Zitat Miasik, J.J., Hooper, A., Tofield, B.C.: Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 82(4), 1117–1126 (1986) Miasik, J.J., Hooper, A., Tofield, B.C.: Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 82(4), 1117–1126 (1986)
24.
Zurück zum Zitat Ates, M.: A review study of (bio)sensor systems based on conducting polymers (1873–0191 (Electronic)) Ates, M.: A review study of (bio)sensor systems based on conducting polymers (1873–0191 (Electronic))
25.
Zurück zum Zitat Pilo, M., et al.: Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)thiophene films. J. Anal. Methods Chem. 2018, 1849439 (2018)CrossRef Pilo, M., et al.: Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)thiophene films. J. Anal. Methods Chem. 2018, 1849439 (2018)CrossRef
26.
Zurück zum Zitat Jugović, B., et al.: Electrochemical science: polypyrrole-based enzyme electrode with immobilized glucose oxidase for electrochemical determination of glucose. Int. J. Electrochem. Sci. 11, 1152–1161 (2016) Jugović, B., et al.: Electrochemical science: polypyrrole-based enzyme electrode with immobilized glucose oxidase for electrochemical determination of glucose. Int. J. Electrochem. Sci. 11, 1152–1161 (2016)
27.
Zurück zum Zitat Li, Y., et al.: Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 10, 21–28 (2020)CrossRef Li, Y., et al.: Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 10, 21–28 (2020)CrossRef
28.
Zurück zum Zitat Bhadra, S., et al.: Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polim. Int. 58(10), 1173–1180 (2009)CrossRef Bhadra, S., et al.: Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polim. Int. 58(10), 1173–1180 (2009)CrossRef
29.
Zurück zum Zitat Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38(8), 2397–2409 (2009)CrossRef Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38(8), 2397–2409 (2009)CrossRef
30.
Zurück zum Zitat Viter, R., et al.: Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. J. Phys. Chem. C 120(9), 5124–5132 (2016)CrossRef Viter, R., et al.: Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. J. Phys. Chem. C 120(9), 5124–5132 (2016)CrossRef
31.
Zurück zum Zitat Forzani, E.S., et al.: A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785–1788 (2004)CrossRef Forzani, E.S., et al.: A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785–1788 (2004)CrossRef
32.
Zurück zum Zitat Kailasa, S., et al.: High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J. Mater. Sci.: Mater. Electron. 31, 2926–2937 (2020) Kailasa, S., et al.: High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J. Mater. Sci.: Mater. Electron. 31, 2926–2937 (2020)
33.
Zurück zum Zitat Zhang, X.-L., et al.: Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5, 580–593 (2005)CrossRef Zhang, X.-L., et al.: Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5, 580–593 (2005)CrossRef
34.
Zurück zum Zitat Li, J., Wei, W., Luo, S.: A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim. Acta 171, 109–116 (2010)CrossRef Li, J., Wei, W., Luo, S.: A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim. Acta 171, 109–116 (2010)CrossRef
35.
Zurück zum Zitat Berk, M., et al.: Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. 116(s434), 41–49 (2007)CrossRef Berk, M., et al.: Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. 116(s434), 41–49 (2007)CrossRef
36.
Zurück zum Zitat Adhikari, A., et al.: Selective sensing of dopamine by sodium cholate tailored polypyrrole-silvernanocomposite. Synth. Met. 260, 116296–116309 (2020)CrossRef Adhikari, A., et al.: Selective sensing of dopamine by sodium cholate tailored polypyrrole-silvernanocomposite. Synth. Met. 260, 116296–116309 (2020)CrossRef
37.
Zurück zum Zitat Gao, Q., et al.: A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81, 109–113 (2011)CrossRef Gao, Q., et al.: A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81, 109–113 (2011)CrossRef
38.
Zurück zum Zitat Kong, B., et al.: Voltammetric determination of hydroquinone using β-Cyclodextrin/Poly(N-Acetylaniline)/carbon nanotube composite modified glassy carbon electrode. Anal. Lett. 40, 2141–2150 (2007)CrossRef Kong, B., et al.: Voltammetric determination of hydroquinone using β-Cyclodextrin/Poly(N-Acetylaniline)/carbon nanotube composite modified glassy carbon electrode. Anal. Lett. 40, 2141–2150 (2007)CrossRef
39.
Zurück zum Zitat Harrazab, F., et al.: Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. 508, 145226 (2020) Harrazab, F., et al.: Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. 508, 145226 (2020)
40.
Zurück zum Zitat Kwon, O.S., et al.: Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 6, 2797–2802 (2012)CrossRef Kwon, O.S., et al.: Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 6, 2797–2802 (2012)CrossRef
41.
Zurück zum Zitat Bakker, E., Qin, Y.: Electrochemical sensors. Anal. Chem. 78(12), 3965–3984 (2006)CrossRef Bakker, E., Qin, Y.: Electrochemical sensors. Anal. Chem. 78(12), 3965–3984 (2006)CrossRef
42.
Zurück zum Zitat Soylemez, S., et al.: A multipurpose conjugated polymer: electrochromic device and biosensor construction for glucose detection. Org. Electron. 65, 327–333 (2019)CrossRef Soylemez, S., et al.: A multipurpose conjugated polymer: electrochromic device and biosensor construction for glucose detection. Org. Electron. 65, 327–333 (2019)CrossRef
43.
Zurück zum Zitat Maity, D., Minitha, C.R, Rajendra Kumar, R.T.: Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 105, 110075 (2019) Maity, D., Minitha, C.R, Rajendra Kumar, R.T.: Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 105, 110075 (2019)
44.
Zurück zum Zitat Kong, Y.-T., Boopathi, M., Shim, Y.-B.: Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens. Bioelectron. 19(3), 227–232 (2003)CrossRef Kong, Y.-T., Boopathi, M., Shim, Y.-B.: Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens. Bioelectron. 19(3), 227–232 (2003)CrossRef
45.
Zurück zum Zitat Miyazaki, C.M., et al.: Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. Mater. Sci. Eng., C 58, 310–315 (2016)CrossRef Miyazaki, C.M., et al.: Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. Mater. Sci. Eng., C 58, 310–315 (2016)CrossRef
46.
Zurück zum Zitat Kaur, N., Thakur, H., Prabhakar, N.: Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem. J. 147, 393–402 (2019)CrossRef Kaur, N., Thakur, H., Prabhakar, N.: Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem. J. 147, 393–402 (2019)CrossRef
47.
Zurück zum Zitat Shelke, U.N., et al.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide carbaryl. Current Pharma Res. 9, 3208–3215 (2019) Shelke, U.N., et al.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide carbaryl. Current Pharma Res. 9, 3208–3215 (2019)
48.
Zurück zum Zitat Cancar, H.D., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 12, 8058–8067 (2016)CrossRef Cancar, H.D., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 12, 8058–8067 (2016)CrossRef
49.
Zurück zum Zitat Viter, R., et al.: Photoelectrochemical bisphenol S sensor based on ZnO-nanoroads modified by molecularly imprinted polypyrrole. Macromol. Chem. Phys. 221, 1900232 (2019)CrossRef Viter, R., et al.: Photoelectrochemical bisphenol S sensor based on ZnO-nanoroads modified by molecularly imprinted polypyrrole. Macromol. Chem. Phys. 221, 1900232 (2019)CrossRef
50.
Zurück zum Zitat Kuwahara, T., et al.: Immobilization of glucose oxidase and electron-mediating groups on the film of 3-methylthiophene/thiophene-3-acetic acid copolymer and its application to reagentless sensing of glucose. Polymer 46(19), 8091–8097 (2005)CrossRef Kuwahara, T., et al.: Immobilization of glucose oxidase and electron-mediating groups on the film of 3-methylthiophene/thiophene-3-acetic acid copolymer and its application to reagentless sensing of glucose. Polymer 46(19), 8091–8097 (2005)CrossRef
51.
Zurück zum Zitat Shelke, U.N., K.S.P., Deshmukh, V.B., Folane, S.A., Gade, V.K.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide. carbaryl. Current Pharma Res. 9(4), 3208–3215 (2019) Shelke, U.N., K.S.P., Deshmukh, V.B., Folane, S.A., Gade, V.K.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide. carbaryl. Current Pharma Res. 9(4), 3208–3215 (2019)
52.
Zurück zum Zitat Chen, X., et al.: Development and validation of HPLC-MS/MS method for the simultaneous determination of 8-Hydroxy-2′-deoxyguanosine and twelve cosmetic phenols in human urine. Chromatographia 82(9), 1415–1421 (2019)CrossRef Chen, X., et al.: Development and validation of HPLC-MS/MS method for the simultaneous determination of 8-Hydroxy-2′-deoxyguanosine and twelve cosmetic phenols in human urine. Chromatographia 82(9), 1415–1421 (2019)CrossRef
53.
Zurück zum Zitat Guler, M., Turkoglu, V., Kivrak, A.: Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. 23(12), 12343–12351 (2016)CrossRef Guler, M., Turkoglu, V., Kivrak, A.: Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. 23(12), 12343–12351 (2016)CrossRef
54.
Zurück zum Zitat Dzudzevic Cancar, H., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 8(12), 8058–8067 (2016)CrossRef Dzudzevic Cancar, H., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 8(12), 8058–8067 (2016)CrossRef
55.
Zurück zum Zitat Wang, M., et al.: Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 832, 174–181 (2019)CrossRef Wang, M., et al.: Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 832, 174–181 (2019)CrossRef
56.
Zurück zum Zitat Raj, M., et al.: Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuat. B: Chem. 239, 993–1002 (2017)CrossRef Raj, M., et al.: Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuat. B: Chem. 239, 993–1002 (2017)CrossRef
57.
Zurück zum Zitat Ghanbari, K., Hajheidari, N.: ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem. 473, 53–62 (2015)CrossRef Ghanbari, K., Hajheidari, N.: ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem. 473, 53–62 (2015)CrossRef
58.
Zurück zum Zitat Ghanbari, K., Moloudi, M.: Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)CrossRef Ghanbari, K., Moloudi, M.: Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)CrossRef
59.
Zurück zum Zitat Narouei, F.: An electrochemical sensor based on conductive polymers/graphite paste electrode for simultaneous determination of dopamine, uric acid and tryptophan in biological samples. Int. J. Electrochem. Sci. 12, 7739–7753 (2017) Narouei, F.: An electrochemical sensor based on conductive polymers/graphite paste electrode for simultaneous determination of dopamine, uric acid and tryptophan in biological samples. Int. J. Electrochem. Sci. 12, 7739–7753 (2017)
60.
Zurück zum Zitat Harraz, F.A., et al.: Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuat. B: Chem. 234, 573–582 (2016)CrossRef Harraz, F.A., et al.: Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuat. B: Chem. 234, 573–582 (2016)CrossRef
61.
Zurück zum Zitat Yang, Z., et al.: One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim. Acta 184(7), 2219–2226 (2017)CrossRef Yang, Z., et al.: One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim. Acta 184(7), 2219–2226 (2017)CrossRef
62.
Zurück zum Zitat Faisal, M., et al.: Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor. Mater. Chem. Phys. 214, 126–134 (2018)CrossRef Faisal, M., et al.: Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor. Mater. Chem. Phys. 214, 126–134 (2018)CrossRef
63.
Zurück zum Zitat Kotanen, C.N., et al.: Fabrication and in vitro performance of a dual responsive lactate and glucose biosensor. Electrochim. Acta 267, 71–79 (2018)CrossRef Kotanen, C.N., et al.: Fabrication and in vitro performance of a dual responsive lactate and glucose biosensor. Electrochim. Acta 267, 71–79 (2018)CrossRef
64.
Zurück zum Zitat Hasanzadeh, M., et al.: Electropolymerization of proline supported beta-cyclodextrin inside amino functionalized magnetic mesoporous silica nanomaterial: one step preparation, characterization and electrochemical application. Anal. Bioanal. Electrochem 10, 77–97 (2018) Hasanzadeh, M., et al.: Electropolymerization of proline supported beta-cyclodextrin inside amino functionalized magnetic mesoporous silica nanomaterial: one step preparation, characterization and electrochemical application. Anal. Bioanal. Electrochem 10, 77–97 (2018)
65.
Zurück zum Zitat Ding, M., et al.: An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J. Electroanal. Chem. 763, 25–31 (2016)CrossRef Ding, M., et al.: An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J. Electroanal. Chem. 763, 25–31 (2016)CrossRef
66.
Zurück zum Zitat Sharma, V., et al.: Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples. Appl. Surf. Sci. 449, 558–566 (2018)CrossRef Sharma, V., et al.: Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples. Appl. Surf. Sci. 449, 558–566 (2018)CrossRef
67.
Zurück zum Zitat Akbulut, H., et al.: Polythiophene-g-poly(ethylene glycol) with lateral amino groups as a novel matrix for biosensor construction. ACS Appl. Mater. Interfaces. 7(37), 20612–20622 (2015)CrossRef Akbulut, H., et al.: Polythiophene-g-poly(ethylene glycol) with lateral amino groups as a novel matrix for biosensor construction. ACS Appl. Mater. Interfaces. 7(37), 20612–20622 (2015)CrossRef
68.
Zurück zum Zitat Sangamithirai, D., et al.: Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. Mater. Sci. Eng., C 55, 579–591 (2015)CrossRef Sangamithirai, D., et al.: Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. Mater. Sci. Eng., C 55, 579–591 (2015)CrossRef
69.
Zurück zum Zitat Baskar, S., Chang Jl Fau-Zen, J.-M., Zen, J.M.: Simultaneous detection of NADH and H(2)O(2) using flow injection analysis based on a bifunctional poly(thionine)-modified electrode (1873–4235 (Electronic)) Baskar, S., Chang Jl Fau-Zen, J.-M., Zen, J.M.: Simultaneous detection of NADH and H(2)O(2) using flow injection analysis based on a bifunctional poly(thionine)-modified electrode (1873–4235 (Electronic))
70.
Zurück zum Zitat Warren, S., et al.: Scanning electrochemical microscopy imaging of poly (3,4-ethylendioxythiophene)/thionine electrodes for lactate detection via NADH electrocatalysis. Biosens. Bioelectron. 137, 15–24 (2019)CrossRef Warren, S., et al.: Scanning electrochemical microscopy imaging of poly (3,4-ethylendioxythiophene)/thionine electrodes for lactate detection via NADH electrocatalysis. Biosens. Bioelectron. 137, 15–24 (2019)CrossRef
71.
Zurück zum Zitat Sahin, M., Ayranci, E.: Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochim. Acta 166, 261–270 (2015)CrossRef Sahin, M., Ayranci, E.: Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochim. Acta 166, 261–270 (2015)CrossRef
72.
Zurück zum Zitat Barsan, M.M., et al.: New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal. Chim. Acta 927, 35–45 (2016)CrossRef Barsan, M.M., et al.: New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal. Chim. Acta 927, 35–45 (2016)CrossRef
73.
Zurück zum Zitat Aydoğdu Tığ, G.: Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 175, 382–389 (2017)CrossRef Aydoğdu Tığ, G.: Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 175, 382–389 (2017)CrossRef
74.
Zurück zum Zitat Ghanbari, K., Nejabati, F.: Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. J. Food Measur. Character. 13(2), 1411–1422 (2019)CrossRef Ghanbari, K., Nejabati, F.: Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. J. Food Measur. Character. 13(2), 1411–1422 (2019)CrossRef
75.
Zurück zum Zitat Sahyar, B.Y., et al.: Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 130, 107327 (2019)CrossRef Sahyar, B.Y., et al.: Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 130, 107327 (2019)CrossRef
76.
Zurück zum Zitat Dervisevic, M., et al.: Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J. Electroanal. Chem. 776, 18–24 (2016)CrossRef Dervisevic, M., et al.: Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J. Electroanal. Chem. 776, 18–24 (2016)CrossRef
77.
Zurück zum Zitat Dervisevic, M., et al.: Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 181, 277–283 (2015)CrossRef Dervisevic, M., et al.: Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 181, 277–283 (2015)CrossRef
78.
Zurück zum Zitat Dervisevic, M., et al.: Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J. Food Drug. Anal. 25(3), 510–519 (2017)CrossRef Dervisevic, M., et al.: Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J. Food Drug. Anal. 25(3), 510–519 (2017)CrossRef
79.
Zurück zum Zitat Saito, M., et al.: A microbial platform based on conducting polymers for evaluating metabolic activity. Anal. Chem. 20, 12793–12798 (2019)CrossRef Saito, M., et al.: A microbial platform based on conducting polymers for evaluating metabolic activity. Anal. Chem. 20, 12793–12798 (2019)CrossRef
80.
Zurück zum Zitat Butina, K., et al.: Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sens. Actuat. B: Chem. 297, 126703–126709 (2019) Butina, K., et al.: Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sens. Actuat. B: Chem. 297, 126703–126709 (2019)
81.
Zurück zum Zitat Riul, A., et al.: Artificial taste sensor: efficient combination of sensors made from langmuir−blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 1, 239–245 (2002)CrossRef Riul, A., et al.: Artificial taste sensor: efficient combination of sensors made from langmuir−blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 1, 239–245 (2002)CrossRef
82.
Zurück zum Zitat Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30(11), 2132–2148 (2009)CrossRef Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30(11), 2132–2148 (2009)CrossRef
83.
Zurück zum Zitat Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)CrossRef Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)CrossRef
84.
Zurück zum Zitat Janata, J., Josowicz, M.: Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)CrossRef Janata, J., Josowicz, M.: Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)CrossRef
85.
Zurück zum Zitat Chang, J.B., et al.: Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 100, 014506 (2006)CrossRef Chang, J.B., et al.: Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 100, 014506 (2006)CrossRef
86.
Zurück zum Zitat Jun, H.K., et al.: Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens. Actuators, B 96, 576–581 (2003)CrossRef Jun, H.K., et al.: Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens. Actuators, B 96, 576–581 (2003)CrossRef
87.
Zurück zum Zitat Saxena, V., Malhotra, B.D.: Prospects of conducting polymers in molecular electronics. Curr. Appl. Phys. 3, 293–305 (2003)CrossRef Saxena, V., Malhotra, B.D.: Prospects of conducting polymers in molecular electronics. Curr. Appl. Phys. 3, 293–305 (2003)CrossRef
88.
Zurück zum Zitat Stetter, J.R., Li, J.: Amperometric gas sensors—a review. Chem. Rev. 108, 352–366 (2008)CrossRef Stetter, J.R., Li, J.: Amperometric gas sensors—a review. Chem. Rev. 108, 352–366 (2008)CrossRef
89.
Zurück zum Zitat Xie, D., et al.: Fabrication and characterization of polyaniline based gas sensor by ultra-thin film technology. Sens. Actuators, B 81, 158–164 (2002)CrossRef Xie, D., et al.: Fabrication and characterization of polyaniline based gas sensor by ultra-thin film technology. Sens. Actuators, B 81, 158–164 (2002)CrossRef
90.
Zurück zum Zitat Tang, C., Chen, N., Hu, X.: Conducting polymer nanocomposites: recent developments and future prospects. In: K. V, K. S, and S. H (eds.) Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials. Springer, Cham (2017) Tang, C., Chen, N., Hu, X.: Conducting polymer nanocomposites: recent developments and future prospects. In: K. V, K. S, and S. H (eds.) Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials. Springer, Cham (2017)
91.
Zurück zum Zitat Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)CrossRef Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)CrossRef
92.
Zurück zum Zitat Kaushik, A., et al.: Organic−inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115, 4571–4606 (2015)CrossRef Kaushik, A., et al.: Organic−inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115, 4571–4606 (2015)CrossRef
93.
Zurück zum Zitat Liu, Y., Kumar, S.: Polymer/carbon nanotube nanocomposite fibers—a review. ACS Appl. Mater. Interfaces 6, 6069–6087 (2014)CrossRef Liu, Y., Kumar, S.: Polymer/carbon nanotube nanocomposite fibers—a review. ACS Appl. Mater. Interfaces 6, 6069–6087 (2014)CrossRef
94.
Zurück zum Zitat Rhazi, M.E., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8, 79–99 (2018)CrossRef Rhazi, M.E., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8, 79–99 (2018)CrossRef
95.
Zurück zum Zitat Yu, X., et al.: Fabrication technologies and sensing applications of graphene-based composite flms: advances and challenges. Biosens. Bioelectron. 89, 72–84 (2017)CrossRef Yu, X., et al.: Fabrication technologies and sensing applications of graphene-based composite flms: advances and challenges. Biosens. Bioelectron. 89, 72–84 (2017)CrossRef
96.
Zurück zum Zitat Wong, Y.C., et al.: Conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167, 037503 (2020)CrossRef Wong, Y.C., et al.: Conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167, 037503 (2020)CrossRef
97.
Zurück zum Zitat Korotcenkov, G., Cho, B.K.: Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuat. B 244, 182–210 (2017)CrossRef Korotcenkov, G., Cho, B.K.: Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuat. B 244, 182–210 (2017)CrossRef
98.
Zurück zum Zitat Pandey, S.: Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci. Adv. Mater. Dev. 1(4), 431–453 (2016) Pandey, S.: Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci. Adv. Mater. Dev. 1(4), 431–453 (2016)
99.
Zurück zum Zitat Fratoddi, I., et al.: Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B: Chem. 220, 534–548 (2015)CrossRef Fratoddi, I., et al.: Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B: Chem. 220, 534–548 (2015)CrossRef
100.
Zurück zum Zitat Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008)CrossRef Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008)CrossRef
101.
Zurück zum Zitat El Rhazi, M., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8(2), 79–99 (2018)CrossRef El Rhazi, M., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8(2), 79–99 (2018)CrossRef
102.
Zurück zum Zitat Ray, C., Pal, T.: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 5(20), 9465–9487 (2017)CrossRef Ray, C., Pal, T.: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 5(20), 9465–9487 (2017)CrossRef
103.
Zurück zum Zitat Mallakpour, S., Khadem, E.: Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302 (2016) Mallakpour, S., Khadem, E.: Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302 (2016)
104.
Zurück zum Zitat Lakard, B., et al.: Gas sensors based on electrodeposited polymers. Metals 5, 1371–1386 (2015)CrossRef Lakard, B., et al.: Gas sensors based on electrodeposited polymers. Metals 5, 1371–1386 (2015)CrossRef
105.
Zurück zum Zitat Wang, X., et al.: Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 233, 86–93 (2017)CrossRef Wang, X., et al.: Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 233, 86–93 (2017)CrossRef
106.
Zurück zum Zitat Han, G., Shi, G.: Porous polypyrrole/polymethylmethacrylate composite film prepared by vapor deposition polymerization of pyrrole and its application for ammonia detection. Thin Solid Films 515, 6986–6991 (2007)CrossRef Han, G., Shi, G.: Porous polypyrrole/polymethylmethacrylate composite film prepared by vapor deposition polymerization of pyrrole and its application for ammonia detection. Thin Solid Films 515, 6986–6991 (2007)CrossRef
107.
Zurück zum Zitat Lobotka, P., et al.: Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films 519, 4123–4127 (2011)CrossRef Lobotka, P., et al.: Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films 519, 4123–4127 (2011)CrossRef
108.
Zurück zum Zitat Wu, Z., et al.: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuator. B 178, 485–493 (2013)CrossRef Wu, Z., et al.: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuator. B 178, 485–493 (2013)CrossRef
109.
Zurück zum Zitat Van Hieu, N., et al.: Thin film polypyrrole/SWCNTs nanocomposites based NH3 sensor operated at room temperature. Sens. Actuat. B 140, 500−507 (2009) Van Hieu, N., et al.: Thin film polypyrrole/SWCNTs nanocomposites based NH3 sensor operated at room temperature. Sens. Actuat. B 140, 500−507 (2009)
110.
Zurück zum Zitat Sun, J., et al.: Facile preparation of polypyrrole-reduced graphene oxide hybrid forenhancing NH3 sensing at room temperature. Sens. Actuat. B 241, 658–664 (2017)CrossRef Sun, J., et al.: Facile preparation of polypyrrole-reduced graphene oxide hybrid forenhancing NH3 sensing at room temperature. Sens. Actuat. B 241, 658–664 (2017)CrossRef
111.
Zurück zum Zitat Sharma, S., et al.: MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process. Sens. Actuat. B 194, 213–219 (2014)CrossRef Sharma, S., et al.: MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process. Sens. Actuat. B 194, 213–219 (2014)CrossRef
112.
Zurück zum Zitat Tai, H., et al.: Fabrication and gas sensitivity of polyaniline−titanium dioxide nanocomposite thin film. Sens. Actuat. B, 125, 644−650 (2007) Tai, H., et al.: Fabrication and gas sensitivity of polyaniline−titanium dioxide nanocomposite thin film. Sens. Actuat. B, 125, 644−650 (2007)
113.
Zurück zum Zitat Tai, H., et al.: Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 26, 605–613 (2010)CrossRef Tai, H., et al.: Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 26, 605–613 (2010)CrossRef
114.
Zurück zum Zitat Kulkarni, S.B., et al.: Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites. Org. Electron. 45, 65–73 (2017)MathSciNetCrossRef Kulkarni, S.B., et al.: Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites. Org. Electron. 45, 65–73 (2017)MathSciNetCrossRef
115.
Zurück zum Zitat Joulazadeh, M., Navarchian, A.H.: Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 210, 404–411 (2015)CrossRef Joulazadeh, M., Navarchian, A.H.: Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 210, 404–411 (2015)CrossRef
116.
Zurück zum Zitat Wang, Y., et al.: Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 21, 1432–1438 (2009)CrossRef Wang, Y., et al.: Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 21, 1432–1438 (2009)CrossRef
117.
Zurück zum Zitat Hien, H.T., et al.: Elaboration of Pd-nanoparticle decorated polyaniline films for roomtemperature NH3 gas sensors. Sens. Actuat. B 249, 348–356 (2017)CrossRef Hien, H.T., et al.: Elaboration of Pd-nanoparticle decorated polyaniline films for roomtemperature NH3 gas sensors. Sens. Actuat. B 249, 348–356 (2017)CrossRef
118.
Zurück zum Zitat Hong, L., Li, Y., Yang, M.: Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens. Actuat. B 145, 25–31 (2010) Hong, L., Li, Y., Yang, M.: Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens. Actuat. B 145, 25–31 (2010)
119.
Zurück zum Zitat Kaushik, A., et al.: Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NOx gas sensing. J. Nanosci. Nanotechnol. 9, 1792–1796 (2009)CrossRef Kaushik, A., et al.: Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NOx gas sensing. J. Nanosci. Nanotechnol. 9, 1792–1796 (2009)CrossRef
120.
Zurück zum Zitat Geng, L., et al.: The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 156, 1078–1082 (2006)CrossRef Geng, L., et al.: The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 156, 1078–1082 (2006)CrossRef
121.
Zurück zum Zitat Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic−organic hybrids. Sens. Actuat. B 146, pp. 8–13 (2010) Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic−organic hybrids. Sens. Actuat. B 146, pp. 8–13 (2010)
122.
Zurück zum Zitat Ram, M.K., Yavuz, O., Aldissi, M.: NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 151, 77–84 (2005)CrossRef Ram, M.K., Yavuz, O., Aldissi, M.: NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 151, 77–84 (2005)CrossRef
123.
Zurück zum Zitat Do, J.-S., Chang, W.-B.: Amperometric nitrogen dioxide gas sensor based on Pan/Au/Nafion prepared by constant current and cyclic voltammetry methods. Sens. Actuat. B, 101, 97−106 (2004) Do, J.-S., Chang, W.-B.: Amperometric nitrogen dioxide gas sensor based on Pan/Au/Nafion prepared by constant current and cyclic voltammetry methods. Sens. Actuat. B, 101, 97−106 (2004)
124.
Zurück zum Zitat Roy, A., et al.: Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor. Synth. Met. 245, 182–189 (2018)CrossRef Roy, A., et al.: Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor. Synth. Met. 245, 182–189 (2018)CrossRef
125.
Zurück zum Zitat Jin, G.P., et al.: Electrodeposition of platinum−nickel alloy nanocomposites on polyaniline-multiwalled carbon nanotubes for carbon monoxide redox. J. Solid State Electrochem. 13, 967–973 (2009)CrossRef Jin, G.P., et al.: Electrodeposition of platinum−nickel alloy nanocomposites on polyaniline-multiwalled carbon nanotubes for carbon monoxide redox. J. Solid State Electrochem. 13, 967–973 (2009)CrossRef
126.
Zurück zum Zitat Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuat. B 128, 366–373 (2008)CrossRef Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuat. B 128, 366–373 (2008)CrossRef
127.
Zurück zum Zitat Chiang, C.-J., et al.: In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 111, 409–415 (2013)CrossRef Chiang, C.-J., et al.: In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 111, 409–415 (2013)CrossRef
128.
Zurück zum Zitat Bhadra, J., et al.: Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv. 9, 12496–12506 (2019)CrossRef Bhadra, J., et al.: Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv. 9, 12496–12506 (2019)CrossRef
129.
Zurück zum Zitat Barde, R.V.: Preparation, characterization and CO2 gas sensitivity of Polyaniline doped with Sodium Superoxide (NaO2). Mater. Res. Bull. 73, 70–76 (2016)MathSciNetCrossRef Barde, R.V.: Preparation, characterization and CO2 gas sensitivity of Polyaniline doped with Sodium Superoxide (NaO2). Mater. Res. Bull. 73, 70–76 (2016)MathSciNetCrossRef
130.
Zurück zum Zitat Li, W., Kim, D.: Polyaniline/multiwall carbon nanotube nanocomposite for detecting aromatic hydrocarbon vapors. J. Mater. Sci. Technol. 46, 1857–1861 (2011) Li, W., Kim, D.: Polyaniline/multiwall carbon nanotube nanocomposite for detecting aromatic hydrocarbon vapors. J. Mater. Sci. Technol. 46, 1857–1861 (2011)
131.
Zurück zum Zitat Patil, S.L., et al.: Measurements on room temperature gas sensing properties of CSA doped polyaniline ZnO nanocomposites. Measurement 45, 243–249 (2012)CrossRef Patil, S.L., et al.: Measurements on room temperature gas sensing properties of CSA doped polyaniline ZnO nanocomposites. Measurement 45, 243–249 (2012)CrossRef
132.
Zurück zum Zitat Bandgar, D.K., et al.: Ultrasensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)CrossRef Bandgar, D.K., et al.: Ultrasensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)CrossRef
133.
Zurück zum Zitat Venditti, I., et al.: Nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties. Nanotechnology 24, 155503–155510 (2013)CrossRef Venditti, I., et al.: Nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties. Nanotechnology 24, 155503–155510 (2013)CrossRef
134.
Zurück zum Zitat Zhang, J., et al.: One-pot fabrication of uniformpolypyrrole/Au nanocomposites and investigation for gas sensing. Sen. Actuators B 186, 695–700 (2013)CrossRef Zhang, J., et al.: One-pot fabrication of uniformpolypyrrole/Au nanocomposites and investigation for gas sensing. Sen. Actuators B 186, 695–700 (2013)CrossRef
135.
Zurück zum Zitat Zhang, W., et al.: High performance tube sensor based on PANI/Eu3+ nanofiber for low-volume NH3 detection. Anal. Chim. Acta 1093, 115–122 (2020)CrossRef Zhang, W., et al.: High performance tube sensor based on PANI/Eu3+ nanofiber for low-volume NH3 detection. Anal. Chim. Acta 1093, 115–122 (2020)CrossRef
136.
Zurück zum Zitat Radhakrishnan, S., Deshpande, S.D.: Conducting polymers functionalized with phthalocyanine as nitrogen dioxide sensors. Sensors 2, 185–194 (2002)CrossRef Radhakrishnan, S., Deshpande, S.D.: Conducting polymers functionalized with phthalocyanine as nitrogen dioxide sensors. Sensors 2, 185–194 (2002)CrossRef
137.
Zurück zum Zitat Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuators B: Chem. 146(1), 8–13 (2010)CrossRef Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuators B: Chem. 146(1), 8–13 (2010)CrossRef
138.
Zurück zum Zitat Barn, P., et al.: A review of the experimental evidence on the toxicokinetics of carbon monoxide: the potential role of pathophysiology among susceptible groups. Environ. Health 17(1), 13 (2018)CrossRef Barn, P., et al.: A review of the experimental evidence on the toxicokinetics of carbon monoxide: the potential role of pathophysiology among susceptible groups. Environ. Health 17(1), 13 (2018)CrossRef
139.
Zurück zum Zitat Wong, Y.C., et al.: Review—conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(3), 037503 (2019)CrossRef Wong, Y.C., et al.: Review—conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(3), 037503 (2019)CrossRef
140.
Zurück zum Zitat Ram, M.K., et al.: CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuat. B, 106, 750−757 (2005) Ram, M.K., et al.: CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuat. B, 106, 750−757 (2005)
141.
Zurück zum Zitat Wells, R.M.G.: Chapter 6—Blood–gas transport and hemoglobin function: adaptations for functional and environmental hypoxia. In: Richards, J.G., Farrell, A.P., Brauner, C.J. (eds.) Fish Physiology, pp. 255–299. Academic Press (2009) Wells, R.M.G.: Chapter 6—Blood–gas transport and hemoglobin function: adaptations for functional and environmental hypoxia. In: Richards, J.G., Farrell, A.P., Brauner, C.J. (eds.) Fish Physiology, pp. 255–299. Academic Press (2009)
142.
Zurück zum Zitat Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuators B: Chem. 128(2), 366–373 (2008)CrossRef Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuators B: Chem. 128(2), 366–373 (2008)CrossRef
143.
Zurück zum Zitat Lu, J., et al.: Polyaniline nanoparticle−carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology 21, 255501 (2010)CrossRef Lu, J., et al.: Polyaniline nanoparticle−carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology 21, 255501 (2010)CrossRef
144.
Zurück zum Zitat Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514, 329–333 (2006)CrossRef Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514, 329–333 (2006)CrossRef
145.
Zurück zum Zitat Athawale, A.A., Bhagwat, S.V., Katre, P.P.: Nanocomposite of Pd−polyaniline as a selective methanol sensor. Sens. Actuators, B 114, 263−267 (2006) Athawale, A.A., Bhagwat, S.V., Katre, P.P.: Nanocomposite of Pd−polyaniline as a selective methanol sensor. Sens. Actuators, B 114, 263−267 (2006)
146.
Zurück zum Zitat Ashraf, A., et al.: Electronic structure of polythiophene gas sensors for chlorinated analytes. J. Mol. Model. 26, 44 (2020)CrossRef Ashraf, A., et al.: Electronic structure of polythiophene gas sensors for chlorinated analytes. J. Mol. Model. 26, 44 (2020)CrossRef
147.
Zurück zum Zitat Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuat. B 85, 131–136 (2002)CrossRef Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuat. B 85, 131–136 (2002)CrossRef
148.
Zurück zum Zitat Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B: Chem. 85(1), 131–136 (2002)CrossRef Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B: Chem. 85(1), 131–136 (2002)CrossRef
149.
Zurück zum Zitat Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514(1), 329–333 (2006) Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514(1), 329–333 (2006)
150.
Zurück zum Zitat Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 10041 (2020) Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 10041 (2020)
151.
Zurück zum Zitat Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55, 3884–3901 (2020)CrossRef Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55, 3884–3901 (2020)CrossRef
152.
Zurück zum Zitat Zeng, F.-W., et al.: Humidity sensors based on polyaniline nanofibres. Sens. Actuators B: Chem. 143, 530–534 (2010)CrossRef Zeng, F.-W., et al.: Humidity sensors based on polyaniline nanofibres. Sens. Actuators B: Chem. 143, 530–534 (2010)CrossRef
153.
Zurück zum Zitat Sarkar, B., Satapathy, D.K., Jaiswal, M.: Nanostructuring mechanical cracks in a flexible conducting polymer thin film for ultra-sensitive vapor sensing. Nanoscale 11, 200–210 (2019)CrossRef Sarkar, B., Satapathy, D.K., Jaiswal, M.: Nanostructuring mechanical cracks in a flexible conducting polymer thin film for ultra-sensitive vapor sensing. Nanoscale 11, 200–210 (2019)CrossRef
154.
Zurück zum Zitat Suhaila, M.H., Abdullah, O.G., Kadhim, G.A.: Hydrogen sulfide sensors based on PANI/f-SWCNT polymer nanocomposite thin films prepared by electrochemical polymerization. J. Sci. Adv. Mater. Dev. 4, 143–149 (2019) Suhaila, M.H., Abdullah, O.G., Kadhim, G.A.: Hydrogen sulfide sensors based on PANI/f-SWCNT polymer nanocomposite thin films prepared by electrochemical polymerization. J. Sci. Adv. Mater. Dev. 4, 143–149 (2019)
155.
Zurück zum Zitat Fang, Q., et al.: Micro-gas-sensor with conducting polymers. Sens. Actuators B: Chem. 84, 66–71 (2002)CrossRef Fang, Q., et al.: Micro-gas-sensor with conducting polymers. Sens. Actuators B: Chem. 84, 66–71 (2002)CrossRef
156.
Zurück zum Zitat Stella, R., et al.: Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sens. Actuators B: Chem. 63, 1–9 (2000)CrossRef Stella, R., et al.: Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sens. Actuators B: Chem. 63, 1–9 (2000)CrossRef
157.
Zurück zum Zitat Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 100419 (2020)CrossRef Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 100419 (2020)CrossRef
158.
Zurück zum Zitat Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55(9), 3884–3901 (2020)CrossRef Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55(9), 3884–3901 (2020)CrossRef
159.
Zurück zum Zitat HadiIsmaila, A., et al.: Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study. Synth. Met. 260, 116294 (2020)CrossRef HadiIsmaila, A., et al.: Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study. Synth. Met. 260, 116294 (2020)CrossRef
160.
Zurück zum Zitat Xu, X., et al.: Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018)CrossRef Xu, X., et al.: Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018)CrossRef
161.
Zurück zum Zitat Ho, H.-A., Leclerc, M.: Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126, 1384–1387 (2004)CrossRef Ho, H.-A., Leclerc, M.: Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126, 1384–1387 (2004)CrossRef
162.
Zurück zum Zitat Jin, Z., Su, Y., Duan, Y.: Development of a polyaniline-based optical ammonia sensor. Sens. Actuators B: Chem. 72, 75–79 (2001)CrossRef Jin, Z., Su, Y., Duan, Y.: Development of a polyaniline-based optical ammonia sensor. Sens. Actuators B: Chem. 72, 75–79 (2001)CrossRef
163.
Zurück zum Zitat Pringsheim, E., Terpetschnig, E., Wolfbeis, O.S.: Optical sensing of pH using thin films of substituted polyanilines. Anal. Chim. Acta 357, 247–252 (1997)CrossRef Pringsheim, E., Terpetschnig, E., Wolfbeis, O.S.: Optical sensing of pH using thin films of substituted polyanilines. Anal. Chim. Acta 357, 247–252 (1997)CrossRef
164.
Zurück zum Zitat Le, T.H., et al.: Polypyrrole/graphene quantum dot composites as a sensor media for epinephrine. J. Nanosci. Nanotechnol. 20, 4005–4010 (2020)CrossRef Le, T.H., et al.: Polypyrrole/graphene quantum dot composites as a sensor media for epinephrine. J. Nanosci. Nanotechnol. 20, 4005–4010 (2020)CrossRef
165.
Zurück zum Zitat Khanikar, T., Singh, V.K.: PANI-PVA composite film coated optical fiber probe as a stable and highly sensitive pH sensor. Opt. Mater. 88, 244–251 (2019)CrossRef Khanikar, T., Singh, V.K.: PANI-PVA composite film coated optical fiber probe as a stable and highly sensitive pH sensor. Opt. Mater. 88, 244–251 (2019)CrossRef
166.
Zurück zum Zitat Ko, Y., et al.: pH-responsive polyaniline/polyethylene glycol composite arrays for colorimetric sensor application. Sens. Actuators B: Chem. 305, 127447 (2020)CrossRef Ko, Y., et al.: pH-responsive polyaniline/polyethylene glycol composite arrays for colorimetric sensor application. Sens. Actuators B: Chem. 305, 127447 (2020)CrossRef
167.
Zurück zum Zitat Stelmach, E., et al.: Tailoring polythiophene cation-selective optodes for wide pH range sensing. Talanta 211, 120663 (2020)CrossRef Stelmach, E., et al.: Tailoring polythiophene cation-selective optodes for wide pH range sensing. Talanta 211, 120663 (2020)CrossRef
168.
Zurück zum Zitat Mishra, K.S., Kumari, D., Gupta, B.D.: Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B: Chem. 171–172, 976–983 (2012) Mishra, K.S., Kumari, D., Gupta, B.D.: Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B: Chem. 171–172, 976–983 (2012)
169.
Zurück zum Zitat Chandra, S., Mukherji, S.: Conducting polymer-based optical sensor for heavy metal detection in drinking water. Proceedings of SPIE 10680, optical sensing and detection V, 106801A (9 May 2018) Chandra, S., Mukherji, S.: Conducting polymer-based optical sensor for heavy metal detection in drinking water. Proceedings of SPIE 10680, optical sensing and detection V, 106801A (9 May 2018)
170.
Zurück zum Zitat Verma, R., Gupta, B.D.: Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 166, 568–575 (2015)CrossRef Verma, R., Gupta, B.D.: Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 166, 568–575 (2015)CrossRef
171.
Zurück zum Zitat Baba, A., et al.: Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy. Langmuir 21, 9058–9064 (2003)CrossRef Baba, A., et al.: Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy. Langmuir 21, 9058–9064 (2003)CrossRef
172.
Zurück zum Zitat Tian, S., et al.: Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide. Adv. Func. Mater. 13, 473–479 (2003)CrossRef Tian, S., et al.: Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide. Adv. Func. Mater. 13, 473–479 (2003)CrossRef
173.
Zurück zum Zitat Celiesiute, R., et al.: Electrochromic sensors based on conducting polymers, metal oxides, and coordination complexes. Crit. Rev. Anal. Chem. 49, 195–208 (2018)CrossRef Celiesiute, R., et al.: Electrochromic sensors based on conducting polymers, metal oxides, and coordination complexes. Crit. Rev. Anal. Chem. 49, 195–208 (2018)CrossRef
174.
Zurück zum Zitat Turemis, M., et al.: ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 211, 120658 (2020)CrossRef Turemis, M., et al.: ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 211, 120658 (2020)CrossRef
Metadaten
Titel
Chemical, Gas and Optical Sensors Based on Conducting Polymers
verfasst von
Subramanian Nellaiappan
K. S. Shalini Devi
Stalin Selvaraj
Uma Maheswari Krishnan
Jatinder Vir Yakhmi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-62090-5_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.