Skip to main content

2019 | OriginalPaper | Buchkapitel

Chemical Reactions in Subcritical Supercritical Fluids

verfasst von : Željko Knez, Maja Leitgeb, Mateja Primožič

Erschienen in: Green Chemistry and Chemical Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Carbonylation
is a group of reactions that introducecarbon monoxideinto organic and inorganic substrates.
Depolymerization
is opposite chemical reaction of polymerization where linear or structural polymeris decomposed to monomer molecules.
Enzyme
is a biological catalyst that can alter the rate and specificity of chemical reactions inside cells, bioreactors –generally in reaction systems.
Hydroformylation
also known as oxo synthesis or oxo process involves the addition of carbon monoxide and hydrogen to an alkene to form an aldehyde containing one more carbon atom than the original alkene.
Hydrogenation
is chemical reaction between molecular hydrogen and an element or compound usually in the presence of catalyst.
Oxidation-reduction reaction
also called redox reaction , is any chemical reaction in which the oxidation number of a participating chemical species changes.
Oxidation
is defined as the loss of electrons or an increase in the oxidation state of an atom by a molecule, an ion, or another atom.
Polymerization
is any reaction in which relatively small molecules called monomers are combined chemically to produce a very large linear or network molecule called polymer.
Reaction
–in chemical reaction one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either chemical elements or compounds.
Subcritical
- the state of substance, mixture, and element when the pressure and temperature are over critical pressure but below critical temperature and below the pressure to condense into a solid,they are compressed below their critical temperatures, yet kept in the liquid state and used above their boiling points with the use of pressure.
Supercritical
- the state of substance, mixture, and element when the pressure and temperature are over critical pressure and critical temperature but below the pressure to condense into a solid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cagniard de la Tour C (1822) Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’essence de pétrole rectifiée. Ann Chim Phys 21:127–132 Cagniard de la Tour C (1822) Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’essence de pétrole rectifiée. Ann Chim Phys 21:127–132
2.
Zurück zum Zitat Andrews T (1869) The Bakerian lecture – on the continuity of the gaseous and liquid states of matter. Phil Trans R Soc Lond 159:575–590CrossRef Andrews T (1869) The Bakerian lecture – on the continuity of the gaseous and liquid states of matter. Phil Trans R Soc Lond 159:575–590CrossRef
3.
Zurück zum Zitat Savage PE, Gopalan S, Mizan TI, Martino CJ, Brok EE (1995) Reactions at supercritical conditions: applications and fundamentals. AICHE J 41:1723–1778CrossRef Savage PE, Gopalan S, Mizan TI, Martino CJ, Brok EE (1995) Reactions at supercritical conditions: applications and fundamentals. AICHE J 41:1723–1778CrossRef
4.
Zurück zum Zitat Clifford AA (1994) Reactions in supercritical fluids. In: Kiran E, Sengers JMHL (eds) Supercritical fluids. NATO ASI series. (Applied sciences), vol 273. Springer, Dordrecht, pp 449–479 Clifford AA (1994) Reactions in supercritical fluids. In: Kiran E, Sengers JMHL (eds) Supercritical fluids. NATO ASI series. (Applied sciences), vol 273. Springer, Dordrecht, pp 449–479
5.
6.
Zurück zum Zitat Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33CrossRef Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33CrossRef
7.
Zurück zum Zitat Knez Z, Markočič E, Leitgeb M, Primožič M, Hrnčič Knez M, Škerget M (2015) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRef Knez Z, Markočič E, Leitgeb M, Primožič M, Hrnčič Knez M, Škerget M (2015) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRef
8.
Zurück zum Zitat Knez Ž, Leitgeb M, Primožič M (2016) Biochemical reactions in supercritical fluids. In: Shi J (ed) Functional food ingredients and nutraceuticals: processing and technologies. Functional foods and nutraceuticals series, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 127–158 Knez Ž, Leitgeb M, Primožič M (2016) Biochemical reactions in supercritical fluids. In: Shi J (ed) Functional food ingredients and nutraceuticals: processing and technologies. Functional foods and nutraceuticals series, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 127–158
9.
Zurück zum Zitat Knez Ž, Leitgeb M, Primožič M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva R (eds) High pressure fluid technology for green food processing. Food engineering series. Springer, Cham, pp 185–215 Knez Ž, Leitgeb M, Primožič M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva R (eds) High pressure fluid technology for green food processing. Food engineering series. Springer, Cham, pp 185–215
10.
Zurück zum Zitat Olmos A, Asensio G, Pérez PJ (2016) Homogeneous metal-based catalysis in supercritical carbon dioxide as reaction medium. ACS Catal 6:4265–4280CrossRef Olmos A, Asensio G, Pérez PJ (2016) Homogeneous metal-based catalysis in supercritical carbon dioxide as reaction medium. ACS Catal 6:4265–4280CrossRef
11.
Zurück zum Zitat Jiang H (2005) Transition metal-catalyzed organic reactions in supercritical carbon dioxide. Curr Org Chem 9:289–297CrossRef Jiang H (2005) Transition metal-catalyzed organic reactions in supercritical carbon dioxide. Curr Org Chem 9:289–297CrossRef
12.
Zurück zum Zitat Bertucco A, Vetter G (2001) High pressure process technology: fundamentals and applications. Industrial Chemistry Library, vol 9. Elsevier, Wiley-VCH Verlag GmbH, Weinheim Bertucco A, Vetter G (2001) High pressure process technology: fundamentals and applications. Industrial Chemistry Library, vol 9. Elsevier, Wiley-VCH Verlag GmbH, Weinheim
13.
Zurück zum Zitat Zhang HP, Chen MC (2009) Polymerization in supercritical carbon dioxide. Prog Chem 21:1869–1879 Zhang HP, Chen MC (2009) Polymerization in supercritical carbon dioxide. Prog Chem 21:1869–1879
14.
Zurück zum Zitat Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids. Rapra Rev Rep 15:8 Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids. Rapra Rev Rep 15:8
15.
Zurück zum Zitat Du L, Kelly JY, Roberts GW, DeSimone JM (2009) Fluoropolymer synthesis in supercritical carbon dioxide. J Supercrit Fluids 47:447–457CrossRef Du L, Kelly JY, Roberts GW, DeSimone JM (2009) Fluoropolymer synthesis in supercritical carbon dioxide. J Supercrit Fluids 47:447–457CrossRef
16.
Zurück zum Zitat Wang WX, Irvine DJ, Howdle SM (2005) Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 44:8654–8658CrossRef Wang WX, Irvine DJ, Howdle SM (2005) Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 44:8654–8658CrossRef
17.
Zurück zum Zitat Oliveira PF, Machado RAF, Barth D, Acosta ED (2016) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide using vinyl terminated poly(dimethylsiloxane). Chem Eng Process 103:46–52CrossRef Oliveira PF, Machado RAF, Barth D, Acosta ED (2016) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide using vinyl terminated poly(dimethylsiloxane). Chem Eng Process 103:46–52CrossRef
18.
Zurück zum Zitat Haldorai Y, Shim J-J, Lim KT (2012) Synthesis of polymer-inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63CrossRef Haldorai Y, Shim J-J, Lim KT (2012) Synthesis of polymer-inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63CrossRef
19.
Zurück zum Zitat Cao LQ, Wang XH, Wang G, Wang JD (2015) A pH-sensitive porous chitosan membrane prepared via surface grafting copolymerization in supercritical carbon dioxide. Polym Int 64:383–388CrossRef Cao LQ, Wang XH, Wang G, Wang JD (2015) A pH-sensitive porous chitosan membrane prepared via surface grafting copolymerization in supercritical carbon dioxide. Polym Int 64:383–388CrossRef
20.
Zurück zum Zitat Dai WL, Luo SL, Yin SF, Au CT (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A Gen 366:2–12CrossRef Dai WL, Luo SL, Yin SF, Au CT (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A Gen 366:2–12CrossRef
21.
Zurück zum Zitat Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Poly Sci B Polym Lett 7:287–292CrossRef Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Poly Sci B Polym Lett 7:287–292CrossRef
22.
Zurück zum Zitat Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148:361–367CrossRef Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148:361–367CrossRef
23.
Zurück zum Zitat Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A Gen 219:259–266CrossRef Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A Gen 219:259–266CrossRef
24.
Zurück zum Zitat Lang XD, Liu XF, He LN (2015) Sustainable solid catalysts for cyclic carbonate synthesis from CO2 and epoxide. Curr Org Chem 19:681–694CrossRef Lang XD, Liu XF, He LN (2015) Sustainable solid catalysts for cyclic carbonate synthesis from CO2 and epoxide. Curr Org Chem 19:681–694CrossRef
25.
Zurück zum Zitat He LN, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem 5:92–94CrossRef He LN, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem 5:92–94CrossRef
26.
Zurück zum Zitat Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124:6335–6342PubMedCrossRef Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124:6335–6342PubMedCrossRef
27.
Zurück zum Zitat Song QW, He LN, Wang JQ, Yasuda H, Sakakura T (2013) Catalytic fixation of CO2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem 15:110–115CrossRef Song QW, He LN, Wang JQ, Yasuda H, Sakakura T (2013) Catalytic fixation of CO2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem 15:110–115CrossRef
28.
Zurück zum Zitat Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization – new strategies and cooperative mechanisms. Coord Chem Rev 255:1460–1479CrossRef Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization – new strategies and cooperative mechanisms. Coord Chem Rev 255:1460–1479CrossRef
29.
Zurück zum Zitat Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kuhn FE (2015) Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. ChemSusChem 8:2436–2454PubMedCrossRef Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kuhn FE (2015) Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. ChemSusChem 8:2436–2454PubMedCrossRef
30.
Zurück zum Zitat Marrone PA (2013) Supercritical water oxidation – current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288CrossRef Marrone PA (2013) Supercritical water oxidation – current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288CrossRef
31.
Zurück zum Zitat Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41CrossRef Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41CrossRef
32.
Zurück zum Zitat Kanetake WT, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122CrossRef Kanetake WT, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122CrossRef
33.
Zurück zum Zitat Marrone PA, Hong GT, Spritzer MH (2007) Developments in supercritical water as a medium for oxidation, reforming, and synthesis. J Adv Oxid Technol 10:157–168 Marrone PA, Hong GT, Spritzer MH (2007) Developments in supercritical water as a medium for oxidation, reforming, and synthesis. J Adv Oxid Technol 10:157–168
34.
Zurück zum Zitat Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in biorefineries. Chem Ing Tech 83:1016–1025CrossRef Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in biorefineries. Chem Ing Tech 83:1016–1025CrossRef
35.
Zurück zum Zitat Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Production of polyols via direct hydrolysis of Kraft lignin: effect of process parameters. Bioresour Technol 139:13–20PubMedCrossRef Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Production of polyols via direct hydrolysis of Kraft lignin: effect of process parameters. Bioresour Technol 139:13–20PubMedCrossRef
36.
Zurück zum Zitat Ma XL, Ma R, Hao WY, Chen MM, Iran F, Cui K, Tian Y, Li YD (2015) Common pathways in ethanolysis of Kraft lignin to platform chemicals over molybdenum-based catalysts. ACS Catal 5:4803–4813CrossRef Ma XL, Ma R, Hao WY, Chen MM, Iran F, Cui K, Tian Y, Li YD (2015) Common pathways in ethanolysis of Kraft lignin to platform chemicals over molybdenum-based catalysts. ACS Catal 5:4803–4813CrossRef
37.
Zurück zum Zitat Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J (2017) Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem Eng J 317:9–19CrossRef Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J (2017) Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem Eng J 317:9–19CrossRef
38.
Zurück zum Zitat Wang X, Zhou J, Li H, Sun G (2013) Depolymerization of lignin with supercritical fluids: a review. Adv Mater Res 821–822:1126–1134CrossRef Wang X, Zhou J, Li H, Sun G (2013) Depolymerization of lignin with supercritical fluids: a review. Adv Mater Res 821–822:1126–1134CrossRef
39.
Zurück zum Zitat Wahyudi O, Sasaki M, Goto M (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88:1656–1664CrossRef Wahyudi O, Sasaki M, Goto M (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88:1656–1664CrossRef
40.
Zurück zum Zitat Rajappagowda R, Numan-Al-Mobin AM, Yao B, Cook RD, Smirnova A (2017) Toward selective lignin liquefaction: synergistic effect of hetero and homogeneous catalysis in sub- and supercritical fluids. Energy Fuel 31:578–586CrossRef Rajappagowda R, Numan-Al-Mobin AM, Yao B, Cook RD, Smirnova A (2017) Toward selective lignin liquefaction: synergistic effect of hetero and homogeneous catalysis in sub- and supercritical fluids. Energy Fuel 31:578–586CrossRef
41.
Zurück zum Zitat Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93:279–284PubMedCrossRef Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93:279–284PubMedCrossRef
42.
Zurück zum Zitat Kamimura A, Ikeda K, Suzuki S, Kato K, Akinari Y, Sugimoto T, Kashiwagi K, Kaiso K, Matsumoto H, Yoshimoto M (2014) Efficient conversion of polyamides to omega-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics. ChemSusChem 7:2473–2477PubMedCrossRef Kamimura A, Ikeda K, Suzuki S, Kato K, Akinari Y, Sugimoto T, Kashiwagi K, Kaiso K, Matsumoto H, Yoshimoto M (2014) Efficient conversion of polyamides to omega-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics. ChemSusChem 7:2473–2477PubMedCrossRef
43.
Zurück zum Zitat Goto M (2009) Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids 47:500–507CrossRef Goto M (2009) Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids 47:500–507CrossRef
44.
Zurück zum Zitat Goto M (2016) Subcritical and supercritical fluid technology for recycling waste plastics. J Jpn Pet Inst 59:254–258CrossRef Goto M (2016) Subcritical and supercritical fluid technology for recycling waste plastics. J Jpn Pet Inst 59:254–258CrossRef
45.
Zurück zum Zitat Ibarra RM, Sasaki M, Goto M, Quitain AT, Montes SMG, Aguilar-Garib JA (2015) Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J Mater Cycles Waste Manage 17:369–379CrossRef Ibarra RM, Sasaki M, Goto M, Quitain AT, Montes SMG, Aguilar-Garib JA (2015) Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J Mater Cycles Waste Manage 17:369–379CrossRef
46.
Zurück zum Zitat Yanagihara N, Ohgane K (2014) Studies on the oxidative degradation of nylons by nitrogen dioxide in supercritical carbon dioxide. Polym Degrad Stab 98:2735–2741CrossRef Yanagihara N, Ohgane K (2014) Studies on the oxidative degradation of nylons by nitrogen dioxide in supercritical carbon dioxide. Polym Degrad Stab 98:2735–2741CrossRef
47.
Zurück zum Zitat Huang J, Qi WJ, Wu YQ, Zhu ZB (2005) Depolymerization of polybutylene terephthalate in supercritical methanol. Acta Polym Sin 2:309–312 Huang J, Qi WJ, Wu YQ, Zhu ZB (2005) Depolymerization of polybutylene terephthalate in supercritical methanol. Acta Polym Sin 2:309–312
48.
Zurück zum Zitat Subramaniam B, Chaudhari RV, Chaudhari AS, Akien GR, Xie ZZ (2014) Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chem Eng Sci 115:3–18CrossRef Subramaniam B, Chaudhari RV, Chaudhari AS, Akien GR, Xie ZZ (2014) Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chem Eng Sci 115:3–18CrossRef
49.
Zurück zum Zitat Zhao LC, Hou ZQ, Liu CZ, Wang YY, Dai LY (2014) A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol. Chin Chem Lett 25:1395–1398CrossRef Zhao LC, Hou ZQ, Liu CZ, Wang YY, Dai LY (2014) A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol. Chin Chem Lett 25:1395–1398CrossRef
50.
Zurück zum Zitat Ikariya T, Kayaki Y, Kishimoto Y, Noguchi Y (2000) Highly efficient carbonylation reactions of organic halides in supercritical carbon dioxide. Prog Nucl Energy 37:429–434CrossRef Ikariya T, Kayaki Y, Kishimoto Y, Noguchi Y (2000) Highly efficient carbonylation reactions of organic halides in supercritical carbon dioxide. Prog Nucl Energy 37:429–434CrossRef
51.
Zurück zum Zitat Sirin OZ, Demirkol O, Akbaslar D, Giray ES (2013) Clean and efficient synthesis of flavanone in sub-critical water. J Supercrit Fluids 81:217–220CrossRef Sirin OZ, Demirkol O, Akbaslar D, Giray ES (2013) Clean and efficient synthesis of flavanone in sub-critical water. J Supercrit Fluids 81:217–220CrossRef
52.
Zurück zum Zitat Amandi R, Scovell K, Licence P, Lotz TJ, Poliakoff M (2007) The synthesis of o-cyclohexylphenol in supercritical carbon dioxide: towards a continuous two-step reaction. Green Chem 9:797–801CrossRef Amandi R, Scovell K, Licence P, Lotz TJ, Poliakoff M (2007) The synthesis of o-cyclohexylphenol in supercritical carbon dioxide: towards a continuous two-step reaction. Green Chem 9:797–801CrossRef
53.
Zurück zum Zitat Sari A (2014) Investigation of the supercritical conditions for Fischer–Tropsch reaction over an industrial Co–Ru/γ-Al2O3 catalyst. Chem Eng J 244:317–326CrossRef Sari A (2014) Investigation of the supercritical conditions for Fischer–Tropsch reaction over an industrial Co–Ru/γ-Al2O3 catalyst. Chem Eng J 244:317–326CrossRef
54.
Zurück zum Zitat Fan L, Fujimoto K (1999) Fischer–Tropsch synthesis in supercritical fluid: characteristics and application. Appl Catal A 186:343–354CrossRef Fan L, Fujimoto K (1999) Fischer–Tropsch synthesis in supercritical fluid: characteristics and application. Appl Catal A 186:343–354CrossRef
55.
Zurück zum Zitat Elbashir NO, Bukur DB, Durham E, Roberts CB (2010) Advancement of Fischer-Tropsch synthesis via utilization of supercritical fluid reaction media. AICHE J 56:997–1015 Elbashir NO, Bukur DB, Durham E, Roberts CB (2010) Advancement of Fischer-Tropsch synthesis via utilization of supercritical fluid reaction media. AICHE J 56:997–1015
56.
Zurück zum Zitat Hao Q-Q, Zhao Y-H, Yang H-H, Liu Z-T, Liu Z-W (2012) Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer–Tropsch synthesis. Energy Fuel 26:6567–6575CrossRef Hao Q-Q, Zhao Y-H, Yang H-H, Liu Z-T, Liu Z-W (2012) Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer–Tropsch synthesis. Energy Fuel 26:6567–6575CrossRef
57.
Zurück zum Zitat Durham E, Stewart C, Roe D, Xu R, Zhang S, Roberts CB (2014) Supercritical Fischer-Tropsch synthesis: heavy aldehyde production and the role of process conditions. Ind Eng Chem Res 53:9695–9702CrossRef Durham E, Stewart C, Roe D, Xu R, Zhang S, Roberts CB (2014) Supercritical Fischer-Tropsch synthesis: heavy aldehyde production and the role of process conditions. Ind Eng Chem Res 53:9695–9702CrossRef
58.
Zurück zum Zitat Durham E, Xu R, Zhang SH, Eden MR, Roberts CB (2013) Supercritical adiabatic reactor for Fischer-Tropsch synthesis. Ind Eng Chem Res 52:3133–3136CrossRef Durham E, Xu R, Zhang SH, Eden MR, Roberts CB (2013) Supercritical adiabatic reactor for Fischer-Tropsch synthesis. Ind Eng Chem Res 52:3133–3136CrossRef
59.
Zurück zum Zitat Toress Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149CrossRef Toress Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149CrossRef
60.
Zurück zum Zitat Fang L (2016) Catalytic wet oxidation of waste drilling fluid. Oxid Commun 39:2728–2732 Fang L (2016) Catalytic wet oxidation of waste drilling fluid. Oxid Commun 39:2728–2732
61.
Zurück zum Zitat Liu HB, Meng YF, Zhang GD, Li G (2016) Supercritical water oxidation of drilling fluid wastewater. Oxid Commun 39:1687–1693 Liu HB, Meng YF, Zhang GD, Li G (2016) Supercritical water oxidation of drilling fluid wastewater. Oxid Commun 39:1687–1693
62.
Zurück zum Zitat Chao M (2014) Supercritical water oxidation of wastewater-based drilling fluid with glycol addition. J Adv Oxid Technol 17:385–388 Chao M (2014) Supercritical water oxidation of wastewater-based drilling fluid with glycol addition. J Adv Oxid Technol 17:385–388
63.
Zurück zum Zitat Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64:289–292CrossRef Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64:289–292CrossRef
64.
Zurück zum Zitat Suzuki Y, Tagaya H, Asou T, Kadokawa J, Chiba K (1999) Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind Eng Chem Res 38:1391–1395CrossRef Suzuki Y, Tagaya H, Asou T, Kadokawa J, Chiba K (1999) Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind Eng Chem Res 38:1391–1395CrossRef
65.
Zurück zum Zitat Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in supercritical water. Polym Degrad Stab 76:179–184CrossRef Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in supercritical water. Polym Degrad Stab 76:179–184CrossRef
66.
Zurück zum Zitat Bermejo M, Cocero MJ (2006) Supercritical water oxidation: a technical review. AICHE J 52:3933–3951CrossRef Bermejo M, Cocero MJ (2006) Supercritical water oxidation: a technical review. AICHE J 52:3933–3951CrossRef
67.
Zurück zum Zitat Brunner G (2009) Near and supercritical water. Part II: oxidative processes. J Supercrit Fluids 47:382–390CrossRef Brunner G (2009) Near and supercritical water. Part II: oxidative processes. J Supercrit Fluids 47:382–390CrossRef
68.
Zurück zum Zitat Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414CrossRef Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47:407–414CrossRef
69.
Zurück zum Zitat Sanchez-Oneto J, Portela JR, Nebot E, de la Ossa EM (2007) Hydrothermal oxidation: application to the treatment of different cutting fluid wastes. J Hazard Mater 144:639–644PubMedCrossRef Sanchez-Oneto J, Portela JR, Nebot E, de la Ossa EM (2007) Hydrothermal oxidation: application to the treatment of different cutting fluid wastes. J Hazard Mater 144:639–644PubMedCrossRef
70.
Zurück zum Zitat Wu Y, Chen Y, Wu K (2014) Role of co-solvents in biomass conversion reactions using sub/supercritical water. In: Fang Z, Xu C (eds) Near-critical and supercritical water and their applications for biorefineries. Springer, Dordrecht, pp 69–98CrossRef Wu Y, Chen Y, Wu K (2014) Role of co-solvents in biomass conversion reactions using sub/supercritical water. In: Fang Z, Xu C (eds) Near-critical and supercritical water and their applications for biorefineries. Springer, Dordrecht, pp 69–98CrossRef
71.
Zurück zum Zitat Martínez CM, Cantero DA, Bermejo MD, Cocero MJ (2015) Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor. Cellulose 22:2231–2243CrossRef Martínez CM, Cantero DA, Bermejo MD, Cocero MJ (2015) Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor. Cellulose 22:2231–2243CrossRef
72.
Zurück zum Zitat Cantero DA, Bermejo MD, Cocero MJ (2015) Governing chemistry of cellulose hydrolysis in supercritical water. ChemSusChem 8:1026–1033PubMedCrossRef Cantero DA, Bermejo MD, Cocero MJ (2015) Governing chemistry of cellulose hydrolysis in supercritical water. ChemSusChem 8:1026–1033PubMedCrossRef
73.
Zurück zum Zitat Cantero DA, Martinez C, Bermejo MD, Cocero MJ (2015) Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17:610–618CrossRef Cantero DA, Martinez C, Bermejo MD, Cocero MJ (2015) Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17:610–618CrossRef
74.
Zurück zum Zitat Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025PubMedCrossRef Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025PubMedCrossRef
75.
Zurück zum Zitat Kim H, Mitton DB, Latanision RH (2010) Corrosion behavior of Ni-base alloys in aqueous HCl solution of pH 2 at high temperature and pressure. Corros Sci 52:801–809CrossRef Kim H, Mitton DB, Latanision RH (2010) Corrosion behavior of Ni-base alloys in aqueous HCl solution of pH 2 at high temperature and pressure. Corros Sci 52:801–809CrossRef
76.
Zurück zum Zitat Onwudili JA, Williams PT (2006) Flameless supercritical water incineration of polycyclic aromatic hydrocarbons. Int J Renew Energy Res 30:523–533CrossRef Onwudili JA, Williams PT (2006) Flameless supercritical water incineration of polycyclic aromatic hydrocarbons. Int J Renew Energy Res 30:523–533CrossRef
77.
Zurück zum Zitat Onwudili JA, Williams PT (2007) Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J Supercrit Fluids 39:399–408CrossRef Onwudili JA, Williams PT (2007) Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J Supercrit Fluids 39:399–408CrossRef
78.
Zurück zum Zitat Li N, Yan B, Xiao XM (2015) A review of laboratory-scale research on upgrading heavy oil in supercritical water. Energies 8:8962–8989CrossRef Li N, Yan B, Xiao XM (2015) A review of laboratory-scale research on upgrading heavy oil in supercritical water. Energies 8:8962–8989CrossRef
79.
Zurück zum Zitat Caniaz RO, Erkey C (2014) Process intensification for heavy oil upgrading using supercritical water. Chem Eng Res Des 92:1845–1863CrossRef Caniaz RO, Erkey C (2014) Process intensification for heavy oil upgrading using supercritical water. Chem Eng Res Des 92:1845–1863CrossRef
80.
Zurück zum Zitat Jiang H, Shen YX, Wan ZY (2008) Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in ScCO2. Tetrahedron 64:508–514CrossRef Jiang H, Shen YX, Wan ZY (2008) Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in ScCO2. Tetrahedron 64:508–514CrossRef
81.
Zurück zum Zitat Jiang HF, Jia LQ, Li JH (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2:161–164CrossRef Jiang HF, Jia LQ, Li JH (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2:161–164CrossRef
82.
Zurück zum Zitat Jia LQ, Jiang HF, Li JH (1999) Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun 11:985–986CrossRef Jia LQ, Jiang HF, Li JH (1999) Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun 11:985–986CrossRef
83.
Zurück zum Zitat Wang ZY, Jiang HF, Ouyang XY, Qi CR, Yang SR (2006) Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. Tetrahedron 62:9846–9854CrossRef Wang ZY, Jiang HF, Ouyang XY, Qi CR, Yang SR (2006) Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. Tetrahedron 62:9846–9854CrossRef
84.
Zurück zum Zitat Seki T, Grunwaldt JD, Baiker A (2008) Heterogeneous catalytic hydrogenation in supercritical fluids: potential and limitations. Ind Eng Chem Res 47:4561–4585CrossRef Seki T, Grunwaldt JD, Baiker A (2008) Heterogeneous catalytic hydrogenation in supercritical fluids: potential and limitations. Ind Eng Chem Res 47:4561–4585CrossRef
85.
Zurück zum Zitat Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Continuous asymmetric hydrogenation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Adv Synth Catal 348:1605–1610CrossRef Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Continuous asymmetric hydrogenation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Adv Synth Catal 348:1605–1610CrossRef
86.
Zurück zum Zitat Theuerkauf J, Francio G, Leitner W (2013) Continuous-flow asymmetric hydrogenation of the beta-keto ester methyl propionylacetate in ionic liquid-supercritical carbon dioxide biphasic systems. Adv Synth Catal 355:209–219CrossRef Theuerkauf J, Francio G, Leitner W (2013) Continuous-flow asymmetric hydrogenation of the beta-keto ester methyl propionylacetate in ionic liquid-supercritical carbon dioxide biphasic systems. Adv Synth Catal 355:209–219CrossRef
87.
Zurück zum Zitat Cole-Hamilton DJ (2006) Asymmetric catalytic synthesis of organic compounds using metal complexes in supercritical fluids. Adv Synth Catal 348:1341–1351CrossRef Cole-Hamilton DJ (2006) Asymmetric catalytic synthesis of organic compounds using metal complexes in supercritical fluids. Adv Synth Catal 348:1341–1351CrossRef
88.
Zurück zum Zitat Altinel H, Avsar G, Yilmaz MK, Guzel B (2009) New perfluorinated rhodium-BINAP catalysts and hydrogenation of styrene in supercritical CO2. J Supercrit Fluids 51:202–208CrossRef Altinel H, Avsar G, Yilmaz MK, Guzel B (2009) New perfluorinated rhodium-BINAP catalysts and hydrogenation of styrene in supercritical CO2. J Supercrit Fluids 51:202–208CrossRef
89.
Zurück zum Zitat Altinel H, Avsar G, Guzel B (2009) Fluorinated rhodium-phosphine complexes as efficient homogeneous catalysts for the hydrogenation of styrene in supercritical carbon dioxide. Transit Met Chem 34:331–335CrossRef Altinel H, Avsar G, Guzel B (2009) Fluorinated rhodium-phosphine complexes as efficient homogeneous catalysts for the hydrogenation of styrene in supercritical carbon dioxide. Transit Met Chem 34:331–335CrossRef
90.
Zurück zum Zitat Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA (2014) Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 50:5200–5202CrossRef Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA (2014) Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 50:5200–5202CrossRef
91.
Zurück zum Zitat Bogel-Lukasik E, Bogel-Lukasik R, da Ponte MN (2009) Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh Chem 140:1361–1369CrossRef Bogel-Lukasik E, Bogel-Lukasik R, da Ponte MN (2009) Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh Chem 140:1361–1369CrossRef
92.
Zurück zum Zitat Clark P, Poliakoff M, Wells A (2007) Continuous flow hydrogenation of a pharmaceutical intermediate, [4-(3,4-dichlorophenyl)-3,4-dihydro-2H-naphthalenyidene]-methylamine, in supercritical carbon dioxide. Adv Synth Catal 349:2655–2659CrossRef Clark P, Poliakoff M, Wells A (2007) Continuous flow hydrogenation of a pharmaceutical intermediate, [4-(3,4-dichlorophenyl)-3,4-dihydro-2H-naphthalenyidene]-methylamine, in supercritical carbon dioxide. Adv Synth Catal 349:2655–2659CrossRef
93.
Zurück zum Zitat Bektesevic S, Kleman AM, Marteel-Parrish AE, Abraham MA (2006) Hydroformylation in supercritical carbon dioxide: catalysis and benign solvents. J Supercrit Fluids 38:232–241CrossRef Bektesevic S, Kleman AM, Marteel-Parrish AE, Abraham MA (2006) Hydroformylation in supercritical carbon dioxide: catalysis and benign solvents. J Supercrit Fluids 38:232–241CrossRef
94.
Zurück zum Zitat Kani I, Flores R, Fackler JP, Akgerman A (2004) Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts. J Supercrit Fluids 31:287–294CrossRef Kani I, Flores R, Fackler JP, Akgerman A (2004) Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts. J Supercrit Fluids 31:287–294CrossRef
95.
Zurück zum Zitat Koeken ACJ, van den Broeke LJP, Deelman BJ, Keurentjes JTF (2011) Full kinetic description of 1-octene hydroformylation in a supercritical medium. J Mol Catal A Chem 346:1–11CrossRef Koeken ACJ, van den Broeke LJP, Deelman BJ, Keurentjes JTF (2011) Full kinetic description of 1-octene hydroformylation in a supercritical medium. J Mol Catal A Chem 346:1–11CrossRef
96.
Zurück zum Zitat Estorach CT, Gimenez-Pedros M, Masdeu-Bulto AM, Sayede AD, Monflier E (2008) Hydroformylation of 1-octene in supercritical carbon dioxide with alkyl P-donor ligands on rhodium using a peracetylated beta-cyclodextrin as a solubiliser. Eur J Inorg Chem 17:2659–2663CrossRef Estorach CT, Gimenez-Pedros M, Masdeu-Bulto AM, Sayede AD, Monflier E (2008) Hydroformylation of 1-octene in supercritical carbon dioxide with alkyl P-donor ligands on rhodium using a peracetylated beta-cyclodextrin as a solubiliser. Eur J Inorg Chem 17:2659–2663CrossRef
97.
Zurück zum Zitat Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef
98.
Zurück zum Zitat Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem 13:1476–1481CrossRef Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem 13:1476–1481CrossRef
99.
Zurück zum Zitat Hintermair U, Hofener T, Pullmann T, Francio G, Leitner W (2010) Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem 2:150–154CrossRef Hintermair U, Hofener T, Pullmann T, Francio G, Leitner W (2010) Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem 2:150–154CrossRef
100.
Zurück zum Zitat Hintermair U, Francio G, Leitner W (2013) A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chem Eur J 19:4538–4547PubMedCrossRef Hintermair U, Francio G, Leitner W (2013) A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chem Eur J 19:4538–4547PubMedCrossRef
101.
Zurück zum Zitat Taguchi M, Yamamoto N, Hojo D, Takami S, Adschiri T, Funazukuri T, Naka T (2014) Synthesis of monocarboxylic acid-modified CeO2 nanoparticles using supercritical water. RSC Adv 4:49605–49613CrossRef Taguchi M, Yamamoto N, Hojo D, Takami S, Adschiri T, Funazukuri T, Naka T (2014) Synthesis of monocarboxylic acid-modified CeO2 nanoparticles using supercritical water. RSC Adv 4:49605–49613CrossRef
102.
Zurück zum Zitat Adschiri T, Takami S, Minami K, Yamagata T, Miyata K, Monshita T, Ueda M, Fukushima K, Ueno M, Okada T, Oshima H, Mitani Y, Asahina S, Unno S (2012) Super hybrid materials. In: Ruck BJ, Kemmitt T (eds) Advanced materials and nanotechnology. Materials science forum, vol 700. Trans Tech Publications, Zurich, pp 145–149 Adschiri T, Takami S, Minami K, Yamagata T, Miyata K, Monshita T, Ueda M, Fukushima K, Ueno M, Okada T, Oshima H, Mitani Y, Asahina S, Unno S (2012) Super hybrid materials. In: Ruck BJ, Kemmitt T (eds) Advanced materials and nanotechnology. Materials science forum, vol 700. Trans Tech Publications, Zurich, pp 145–149
103.
Zurück zum Zitat Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef
104.
Zurück zum Zitat Adschiri T, Lee YW, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390CrossRef Adschiri T, Lee YW, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390CrossRef
105.
Zurück zum Zitat Adschiri T, Takami S, Arita T, Hojo D, Minami K, Aoki N, Togashi T (2013) Supercritical hydrothermal synthesis. In: Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing, and properties, 2nd edn. Elsevier, Wiley-VCH Verlag GmbH, Weinheim Adschiri T, Takami S, Arita T, Hojo D, Minami K, Aoki N, Togashi T (2013) Supercritical hydrothermal synthesis. In: Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing, and properties, 2nd edn. Elsevier, Wiley-VCH Verlag GmbH, Weinheim
106.
Zurück zum Zitat Adschiri T, Byrappa K (2009) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. In: Muramatsu A, Miyashita T (eds) Nanohybridization of organic-inorganic materials, advances in materials research, vol 13. Springer, Berlin/Heidelberg Adschiri T, Byrappa K (2009) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. In: Muramatsu A, Miyashita T (eds) Nanohybridization of organic-inorganic materials, advances in materials research, vol 13. Springer, Berlin/Heidelberg
107.
Zurück zum Zitat Fujii T, Kawasaki S, Adschiri T (2016) Kinetic study of octanoic acid enhanced crystal growth of boehmite under sub- and supercritical hydrothermal conditions. J Supercrit Fluids 118:148–152CrossRef Fujii T, Kawasaki S, Adschiri T (2016) Kinetic study of octanoic acid enhanced crystal growth of boehmite under sub- and supercritical hydrothermal conditions. J Supercrit Fluids 118:148–152CrossRef
108.
Zurück zum Zitat Fujii T, Kawasaki S, Suzuki A, Adschiri T (2016) High-speed morphology control of boehmite nanoparticles by supercritical hydrothermal treatment with carboxylic acids. Cryst Growth Des 16:1996–2001CrossRef Fujii T, Kawasaki S, Suzuki A, Adschiri T (2016) High-speed morphology control of boehmite nanoparticles by supercritical hydrothermal treatment with carboxylic acids. Cryst Growth Des 16:1996–2001CrossRef
109.
Zurück zum Zitat Aoki N, Sato A, Sasaki H, Litwinowicz AA, Seong G, Aida T, Hojo D, Takami S, Adschiri T (2016) Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors. J Supercrit Fluids 110:161–166CrossRef Aoki N, Sato A, Sasaki H, Litwinowicz AA, Seong G, Aida T, Hojo D, Takami S, Adschiri T (2016) Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors. J Supercrit Fluids 110:161–166CrossRef
110.
Zurück zum Zitat Ghaffari-Moghaddam M, Eslahi H, Aydin YA, Saloglu D (2015) Enzymatic processes in alternative reaction media: a mini review. J Biol Methods 2:e25CrossRef Ghaffari-Moghaddam M, Eslahi H, Aydin YA, Saloglu D (2015) Enzymatic processes in alternative reaction media: a mini review. J Biol Methods 2:e25CrossRef
111.
Zurück zum Zitat Knez Ž (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47:357–372CrossRef Knez Ž (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47:357–372CrossRef
112.
Zurück zum Zitat Habulin M, Primozic M, Knez Z (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54:667–677 Habulin M, Primozic M, Knez Z (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54:667–677
113.
Zurück zum Zitat Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820PubMedCrossRef Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820PubMedCrossRef
114.
Zurück zum Zitat Kavcic S, Knez Z, Leitgeb M (2014) Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. J Supercrit Fluids 85:143–150CrossRef Kavcic S, Knez Z, Leitgeb M (2014) Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. J Supercrit Fluids 85:143–150CrossRef
115.
Zurück zum Zitat Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280PubMedCrossRef Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280PubMedCrossRef
116.
Zurück zum Zitat Knez Z, Leitgeb M, Primozic M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva RP (eds) High pressure fluid technology for green food processing. Book series: food engineering series. Springer International Publishing, Cham, pp 185–215 Knez Z, Leitgeb M, Primozic M (2015) Enzymatic reactions in supercritical fluids. In: Fornari T, Stateva RP (eds) High pressure fluid technology for green food processing. Book series: food engineering series. Springer International Publishing, Cham, pp 185–215
117.
Zurück zum Zitat Melgosa R, Sanz MT, Solaesa AG, de Paz E, Beltran S, Lamas DL (2017) Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: kinetic study. J CO2 Util 17:170–179CrossRef Melgosa R, Sanz MT, Solaesa AG, de Paz E, Beltran S, Lamas DL (2017) Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: kinetic study. J CO2 Util 17:170–179CrossRef
118.
Zurück zum Zitat Manera AP, Zabot GL, Oliveira JV, de Oliveira D, Mazutt MA, Kalil SJ, Treichel H, Maugeri F (2012) Enzymatic synthesis of galactooligosaccharides using pressurised fluids as reaction medium. Food Chem 133:1408–1413CrossRef Manera AP, Zabot GL, Oliveira JV, de Oliveira D, Mazutt MA, Kalil SJ, Treichel H, Maugeri F (2012) Enzymatic synthesis of galactooligosaccharides using pressurised fluids as reaction medium. Food Chem 133:1408–1413CrossRef
119.
Zurück zum Zitat Varma MN, Deshpande PA, Madras G (2010) Synthesis of biodiesel in supercritical alcohols and supercritical carbon dioxide. Fuel 89:1641–1646CrossRef Varma MN, Deshpande PA, Madras G (2010) Synthesis of biodiesel in supercritical alcohols and supercritical carbon dioxide. Fuel 89:1641–1646CrossRef
120.
Zurück zum Zitat Knez Z, Laudani CG, Habulin M, Reverchon E (2007) Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol Bioeng 97:1366–1375PubMedCrossRef Knez Z, Laudani CG, Habulin M, Reverchon E (2007) Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol Bioeng 97:1366–1375PubMedCrossRef
121.
Zurück zum Zitat Laudani CG, Habulin M, Knez Z, Della Porta G, Reverchon E (2007) Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercrit Fluids 41:92–101CrossRef Laudani CG, Habulin M, Knez Z, Della Porta G, Reverchon E (2007) Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercrit Fluids 41:92–101CrossRef
122.
Zurück zum Zitat Varma MN, Madras G (2007) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 141:139–147PubMedCrossRef Varma MN, Madras G (2007) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 141:139–147PubMedCrossRef
123.
Zurück zum Zitat Ghaziaskar HS, Daneshfar A, Calvo L (2006) Continuous esterification or dehydration in supercritical carbon dioxide. Green Chem 8:576–581CrossRef Ghaziaskar HS, Daneshfar A, Calvo L (2006) Continuous esterification or dehydration in supercritical carbon dioxide. Green Chem 8:576–581CrossRef
124.
Zurück zum Zitat Rios APDL, Hernandez-Fernandez FJ, Gomez D, Rubio M, Tomas-Alonso F, Villora G (2007) Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. J Supercrit Fluids 43:303–309CrossRef Rios APDL, Hernandez-Fernandez FJ, Gomez D, Rubio M, Tomas-Alonso F, Villora G (2007) Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. J Supercrit Fluids 43:303–309CrossRef
125.
Zurück zum Zitat Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226CrossRef Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226CrossRef
126.
Zurück zum Zitat Polloni AE, Veneral JG, Rebelatto EA, de Oliveira D, Oliveira JV, Araujo PHH, Sayer C (2017) Enzymatic ring opening polymerization of omega-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228CrossRef Polloni AE, Veneral JG, Rebelatto EA, de Oliveira D, Oliveira JV, Araujo PHH, Sayer C (2017) Enzymatic ring opening polymerization of omega-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228CrossRef
127.
Zurück zum Zitat Rosso SRC, Bianchin E, de Oliveira D, Oliveira JV, Ferreira SRS (2013) Enzymatic synthesis of poly(epsilon-caprolactone) in supercritical carbon dioxide medium by means of a variable-volume view reactor. J Supercrit Fluids 79:133–141CrossRef Rosso SRC, Bianchin E, de Oliveira D, Oliveira JV, Ferreira SRS (2013) Enzymatic synthesis of poly(epsilon-caprolactone) in supercritical carbon dioxide medium by means of a variable-volume view reactor. J Supercrit Fluids 79:133–141CrossRef
128.
Zurück zum Zitat Guzman-Lagunes F, Lopez-Luna A, Gimeno M, Barzana E (2013) Enzymatic synthesis of poly-l-lactide in supercritical R134a. J Supercrit Fluids 72:186–190CrossRef Guzman-Lagunes F, Lopez-Luna A, Gimeno M, Barzana E (2013) Enzymatic synthesis of poly-l-lactide in supercritical R134a. J Supercrit Fluids 72:186–190CrossRef
129.
Zurück zum Zitat Lopez-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Barzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67:143–149CrossRef Lopez-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Barzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67:143–149CrossRef
130.
Zurück zum Zitat Osanai Y, Toshima K, Matsumura S (2006) Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci Technol Adv Mater 7:202–208CrossRef Osanai Y, Toshima K, Matsumura S (2006) Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci Technol Adv Mater 7:202–208CrossRef
131.
Zurück zum Zitat Taher H, Al-Zuhair S (2017) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod Biorefin 11:168–194CrossRef Taher H, Al-Zuhair S (2017) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod Biorefin 11:168–194CrossRef
132.
Zurück zum Zitat Gutierrez-Arnillas E, Alvarez MS, Deive FJ, Rodriguez A, Sanroman MA (2016) New horizons in the enzymatic production of biodiesel using neoteric solvents. Renew Energy 98:92–100CrossRef Gutierrez-Arnillas E, Alvarez MS, Deive FJ, Rodriguez A, Sanroman MA (2016) New horizons in the enzymatic production of biodiesel using neoteric solvents. Renew Energy 98:92–100CrossRef
133.
Zurück zum Zitat Ciftci ON, Temelli F (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modelling. J Supercrit Fluids 75:172–180CrossRef Ciftci ON, Temelli F (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modelling. J Supercrit Fluids 75:172–180CrossRef
134.
Zurück zum Zitat Taher H, Al-Zuhair S, Almarzouqui A, Hashim I (2011) Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 55:23–31CrossRef Taher H, Al-Zuhair S, Almarzouqui A, Hashim I (2011) Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 55:23–31CrossRef
135.
Zurück zum Zitat Lee JH, Kwon CH, Kang JW, Park C, Tae B, Kim SW (2009) Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Appl Biochem Biotechnol 156:454–464CrossRef Lee JH, Kwon CH, Kang JW, Park C, Tae B, Kim SW (2009) Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Appl Biochem Biotechnol 156:454–464CrossRef
136.
Zurück zum Zitat Varma MN, Madras G (2007) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res 46:1–6CrossRef Varma MN, Madras G (2007) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res 46:1–6CrossRef
137.
Zurück zum Zitat Gameiro M, Lisboa P, Paiva A, Barreiros S, Simoes P (2015) Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel 153:135–142CrossRef Gameiro M, Lisboa P, Paiva A, Barreiros S, Simoes P (2015) Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel 153:135–142CrossRef
138.
Zurück zum Zitat Colombo TS, Mazutti MA, Di Luccio M, de Oliveira D, Oliveira JV (2015) Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. J Supercrit Fluids 97:16–21CrossRef Colombo TS, Mazutti MA, Di Luccio M, de Oliveira D, Oliveira JV (2015) Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. J Supercrit Fluids 97:16–21CrossRef
139.
Zurück zum Zitat Ciftci ON, Temelli F (2011) Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. J Supercrit Fluids 58:79–87CrossRef Ciftci ON, Temelli F (2011) Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. J Supercrit Fluids 58:79–87CrossRef
140.
Zurück zum Zitat Varma MN, Madras G (2010) Kinetics of enzymatic synthesis of geranyl butyrate by transesterification in various supercritical fluids. Biochem Eng J 49:250–255CrossRef Varma MN, Madras G (2010) Kinetics of enzymatic synthesis of geranyl butyrate by transesterification in various supercritical fluids. Biochem Eng J 49:250–255CrossRef
141.
Zurück zum Zitat Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour Technol 100:5818–5826PubMedCrossRef Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour Technol 100:5818–5826PubMedCrossRef
142.
Zurück zum Zitat Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose 22:3619–3631CrossRef Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose 22:3619–3631CrossRef
143.
Zurück zum Zitat Senyay-Oncel D, Yesil-Celiktas O (2013) Treatment of immobilized alpha-amylase under supercritical CO2 conditions: can activity be enhanced after consecutive enzymatic reactions? J Mol Catal B Enzym 91:72–76CrossRef Senyay-Oncel D, Yesil-Celiktas O (2013) Treatment of immobilized alpha-amylase under supercritical CO2 conditions: can activity be enhanced after consecutive enzymatic reactions? J Mol Catal B Enzym 91:72–76CrossRef
144.
Zurück zum Zitat Matsuda T (2013) Recent progress in biocatalysis using supercritical carbon dioxide. J Biosci Bioeng 115:233–241PubMedCrossRef Matsuda T (2013) Recent progress in biocatalysis using supercritical carbon dioxide. J Biosci Bioeng 115:233–241PubMedCrossRef
145.
Zurück zum Zitat Peng YK, Sun LL, Shi W, Long JJ (2016) Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J Clean Prod 125:331–340CrossRef Peng YK, Sun LL, Shi W, Long JJ (2016) Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J Clean Prod 125:331–340CrossRef
146.
Zurück zum Zitat Carvalho NB, Silva MAD, Fricks AT, Franceschi E, Dariva C, Zanin GM, Lima AS, Soares CMF (2014) Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. J Mol Catal B Enzym 99:130–135CrossRef Carvalho NB, Silva MAD, Fricks AT, Franceschi E, Dariva C, Zanin GM, Lima AS, Soares CMF (2014) Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. J Mol Catal B Enzym 99:130–135CrossRef
147.
Zurück zum Zitat Housaindokht MR, Monhemi H (2013) The open lid conformation of the lipase is explored in the compressed gas: new insights from molecular dynamic simulation. J Mol Catal B Enzym 87:135–138CrossRef Housaindokht MR, Monhemi H (2013) The open lid conformation of the lipase is explored in the compressed gas: new insights from molecular dynamic simulation. J Mol Catal B Enzym 87:135–138CrossRef
148.
Zurück zum Zitat Kuhn GD, Coghetto C, Treichel H, de Oliveira D, Oliveira JV (2011) Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochem 46:2286–2290CrossRef Kuhn GD, Coghetto C, Treichel H, de Oliveira D, Oliveira JV (2011) Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochem 46:2286–2290CrossRef
149.
Zurück zum Zitat Manera AP, Kuhn G, Polloni A, Marangoni M, Zabot G, Kalil SJ, de Oliveira D, Treichel H, Oliveira JV, Mazutti MA, Maugeri F (2011) Effect of compressed fluids treatment on the activity, stability and enzymatic reaction performance of beta-galactosidase. Food Chem 125:1235–1240CrossRef Manera AP, Kuhn G, Polloni A, Marangoni M, Zabot G, Kalil SJ, de Oliveira D, Treichel H, Oliveira JV, Mazutti MA, Maugeri F (2011) Effect of compressed fluids treatment on the activity, stability and enzymatic reaction performance of beta-galactosidase. Food Chem 125:1235–1240CrossRef
150.
Zurück zum Zitat Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of alpha-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112:435–440PubMedCrossRef Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of alpha-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112:435–440PubMedCrossRef
151.
Zurück zum Zitat Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520CrossRef Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520CrossRef
152.
Zurück zum Zitat Fricks AT, Oestreicher EG, Cardozo L, Feihrmann AC, Cordeiro Y, Dariva C, Antunes OAC (2009) Effects of compressed fluids on the activity and structure of horseradish peroxidase. J Supercrit Fluids 50:162–168CrossRef Fricks AT, Oestreicher EG, Cardozo L, Feihrmann AC, Cordeiro Y, Dariva C, Antunes OAC (2009) Effects of compressed fluids on the activity and structure of horseradish peroxidase. J Supercrit Fluids 50:162–168CrossRef
153.
Zurück zum Zitat Yu G, Xue Y, Xu W, Zhang J, Xue CH (2008) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34:793–798CrossRef Yu G, Xue Y, Xu W, Zhang J, Xue CH (2008) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34:793–798CrossRef
154.
Zurück zum Zitat Oliveira D, Feihrmann AC, Rubira AF, Kunita MH, Dariva C, Oliveira JV (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382CrossRef Oliveira D, Feihrmann AC, Rubira AF, Kunita MH, Dariva C, Oliveira JV (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382CrossRef
155.
Zurück zum Zitat De Oliveira D, Feihrmann AC, Dariva C, Cunha AG, Bevilaqua JV, Destain J, Oliveir JV, Freire DMG (2006) Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. J Mol Catal B Enzym 39:117–123CrossRef De Oliveira D, Feihrmann AC, Dariva C, Cunha AG, Bevilaqua JV, Destain J, Oliveir JV, Freire DMG (2006) Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. J Mol Catal B Enzym 39:117–123CrossRef
156.
Zurück zum Zitat Bermejo MD, Kotlewska AJ, Florusse LJ, Cocero MJ, van Rantwijk F, Peters CJ (2008) Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid-CO2 media. Green Chem 10:1049–1054CrossRef Bermejo MD, Kotlewska AJ, Florusse LJ, Cocero MJ, van Rantwijk F, Peters CJ (2008) Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid-CO2 media. Green Chem 10:1049–1054CrossRef
157.
Zurück zum Zitat Lozano P, Nieto S, Serrano JL, Perez J, Sanchez-Gomez G, Garcia-Verdugo E, Luis SV (2017) Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini Rev Org Chem 14:65–74CrossRef Lozano P, Nieto S, Serrano JL, Perez J, Sanchez-Gomez G, Garcia-Verdugo E, Luis SV (2017) Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini Rev Org Chem 14:65–74CrossRef
158.
Zurück zum Zitat Lozano P, Garcia-Verdugo E, Luis SV, Pucheault M, Vaultier M (2011) (Bio) Catalytic continuous flow processes in scCO2 and/or ILs: towards sustainable (Bio) catalytic synthetic platforms. Curr Org Chem 8:810–823 Lozano P, Garcia-Verdugo E, Luis SV, Pucheault M, Vaultier M (2011) (Bio) Catalytic continuous flow processes in scCO2 and/or ILs: towards sustainable (Bio) catalytic synthetic platforms. Curr Org Chem 8:810–823
159.
Zurück zum Zitat Lozano P, Bernal JM, Vaultier M (2011) Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 90:3461–3467CrossRef Lozano P, Bernal JM, Vaultier M (2011) Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 90:3461–3467CrossRef
160.
Zurück zum Zitat Lozano P, De Diego T, Vaultier M, Iborra JL (2009) Dynamic kinetic resolution of sec-alcohols in ionic liquids/supercritical carbon dioxide biphasic systems. Int J Chem React Eng 7:A79 Lozano P, De Diego T, Vaultier M, Iborra JL (2009) Dynamic kinetic resolution of sec-alcohols in ionic liquids/supercritical carbon dioxide biphasic systems. Int J Chem React Eng 7:A79
161.
Zurück zum Zitat Hernandez FJ, de los Rios AP, Gomez D, Rubio M, Villora G (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67:121–126CrossRef Hernandez FJ, de los Rios AP, Gomez D, Rubio M, Villora G (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67:121–126CrossRef
162.
Zurück zum Zitat Mena M, Shirai K, Tecante A, Barzana E, Gimeno M (2015) Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a-ionic liquid media. J Supercrit Fluids 103:77–82CrossRef Mena M, Shirai K, Tecante A, Barzana E, Gimeno M (2015) Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a-ionic liquid media. J Supercrit Fluids 103:77–82CrossRef
163.
Zurück zum Zitat Hooley RJ (2016) Biomimetic catalysis: taking on the turnover challenge. Nat Chem 8:202–204PubMedCrossRef Hooley RJ (2016) Biomimetic catalysis: taking on the turnover challenge. Nat Chem 8:202–204PubMedCrossRef
164.
Zurück zum Zitat Shen F, Smith RL, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5:2421–2427CrossRef Shen F, Smith RL, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5:2421–2427CrossRef
165.
Zurück zum Zitat Chen H, Wang Y, Wang Q, Li J, Yang S, Zhu Z (2014) Bifunctional organic polymeric catalysts with a tunable acid-base distance and framework flexibility. Sci Rep 4:6475PubMedPubMedCentralCrossRef Chen H, Wang Y, Wang Q, Li J, Yang S, Zhu Z (2014) Bifunctional organic polymeric catalysts with a tunable acid-base distance and framework flexibility. Sci Rep 4:6475PubMedPubMedCentralCrossRef
Zurück zum Zitat Brunner G (2004) Supercritical fluids as solvents and reaction media. Elsevier B.V, Amsterdam Brunner G (2004) Supercritical fluids as solvents and reaction media. Elsevier B.V, Amsterdam
Zurück zum Zitat Jessop PG, Leitner W (2007) Chemical synthesis using supercritical fluids. WILEY-VCH Verlag GmbH, Weinheim Jessop PG, Leitner W (2007) Chemical synthesis using supercritical fluids. WILEY-VCH Verlag GmbH, Weinheim
Zurück zum Zitat Kiran E, Debenedetti PG, Peters CJ (2000) Supercritical fluids: fundamentals and applications. Springer Science+Business Media, DordrechtCrossRef Kiran E, Debenedetti PG, Peters CJ (2000) Supercritical fluids: fundamentals and applications. Springer Science+Business Media, DordrechtCrossRef
Metadaten
Titel
Chemical Reactions in Subcritical Supercritical Fluids
verfasst von
Željko Knez
Maja Leitgeb
Mateja Primožič
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1004