Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2020

21.01.2020 | Review Article

Chemistry and application of emerging ecofriendly antifouling paints: a review

verfasst von: Sampson Kofi Kyei, Godfred Darko, Onyewuchi Akaranta

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There has been a global concern about the use of tributyltin-based coatings in combating biofouling in the marine industry. Although there have been alternatives to tributyltin in preventing biofouling, the emphasis is now on the use of nontoxic and/or ecofriendly natural materials which do not negatively affect the environment upon application. Natural materials are ecofriendly, biodegradable, cost-effective, and can be employed as precursors in the synthesis and formulation of biodegradable antifouling coatings. Consequently, many researchers are investing time into the synthesis and formulation of natural, ecofriendly antifouling coatings, comprised of higher biofiber, which would perform analogous antifouling like other conventional coatings, thus minimizing the more toxic base polymer proportion. A safe environment is surely the signal of a bright future; hence, cost-effective, biodegradable raw materials result in a long-term attainment of sustainability of these products to replace the expensive conventional ones. This review presents an overview of ecologically friendly, cost-effective, and legally acceptable ways of preventing and mitigating the growth of algae and other marine organisms from settling on the hull of a ship and other static constructions in oilfields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ciriminna, R, Bright, FV, Pagliaro, M, “Ecofriendly Antifouling Marine Coatings.” ACS Sustain. Chem. Eng., 3 (4) 559–565 (2015) Ciriminna, R, Bright, FV, Pagliaro, M, “Ecofriendly Antifouling Marine Coatings.” ACS Sustain. Chem. Eng., 3 (4) 559–565 (2015)
2.
Zurück zum Zitat McVay, IR, Maher, WA, Krikowa, F, Ubrhien, R, “Metal Concentrations in Waters, Sediments and Biota of the Far South-East Coast of New South Wales, Australia, with an Emphasis on Sn, Cu and Zn Used as Marine Antifoulant Agents.” Environ. Geochem. Health, 41 (3) 1351–1367 (2019) McVay, IR, Maher, WA, Krikowa, F, Ubrhien, R, “Metal Concentrations in Waters, Sediments and Biota of the Far South-East Coast of New South Wales, Australia, with an Emphasis on Sn, Cu and Zn Used as Marine Antifoulant Agents.” Environ. Geochem. Health, 41 (3) 1351–1367 (2019)
3.
Zurück zum Zitat Magin, CM, Cooper, SP, Brennan, AB, “Non-toxic Antifouling Strategies.” Materials Today, 13 (4) 36–44 (2010) Magin, CM, Cooper, SP, Brennan, AB, “Non-toxic Antifouling Strategies.” Materials Today, 13 (4) 36–44 (2010)
4.
Zurück zum Zitat Ulaeto, SB, Rajan, R, Pancrecious, JK, Rajan, TPD, Pai, BC, “Developments in Smart Anticorrosive Coatings with Multifunctional Characteristics.” Prog. Org. Coat., 111 (1) 294–314 (2017) Ulaeto, SB, Rajan, R, Pancrecious, JK, Rajan, TPD, Pai, BC, “Developments in Smart Anticorrosive Coatings with Multifunctional Characteristics.” Prog. Org. Coat., 111 (1) 294–314 (2017)
5.
Zurück zum Zitat Yebra, DM, Weinell, CE, “Key Issues in the Formulation of Marine Antifouling Paints.” In: Hellio, C, Yebra, D (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 308–333. Woodhead Publishing Limited, Sawston (2009) Yebra, DM, Weinell, CE, “Key Issues in the Formulation of Marine Antifouling Paints.” In: Hellio, C, Yebra, D (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 308–333. Woodhead Publishing Limited, Sawston (2009)
6.
Zurück zum Zitat Shevchenko, VY, Shilova, OA, Kochina, TA, “Environmentally Friendly Protective Coatings for Transport.” Her. Russ. Acad. Sci., 89 (3) 279–286 (2019) Shevchenko, VY, Shilova, OA, Kochina, TA, “Environmentally Friendly Protective Coatings for Transport.” Her. Russ. Acad. Sci., 89 (3) 279–286 (2019)
7.
Zurück zum Zitat IMO, “Focus on IMO: Anti-fouling Systems.” Int. Marit. Organ., 44 1–31 (2002) IMO, “Focus on IMO: Anti-fouling Systems.” Int. Marit. Organ., 44 1–31 (2002)
8.
Zurück zum Zitat Hemaida, HAE, Ali, AED, Sadek, SMM, “Potential Anti-Fouling Agents: Metal Complexes of 3-(2-Furylidene)hydrazino-5,6-diphenyl-1,2,4-triazine.” Pigment Resin Technol., 37 (4) 243–249 (2008) Hemaida, HAE, Ali, AED, Sadek, SMM, “Potential Anti-Fouling Agents: Metal Complexes of 3-(2-Furylidene)hydrazino-5,6-diphenyl-1,2,4-triazine.” Pigment Resin Technol., 37 (4) 243–249 (2008)
9.
Zurück zum Zitat Almeida, E, Diamantino, TC, de Sousa, O, “Marine Paints: The Particular Case of Antifouling Paints.” Prog. Org. Coat., 59 (1) 2–20 (2007) Almeida, E, Diamantino, TC, de Sousa, O, “Marine Paints: The Particular Case of Antifouling Paints.” Prog. Org. Coat., 59 (1) 2–20 (2007)
10.
Zurück zum Zitat Amara, I, Miled, W, Ben, Slama R, Ladhari, N, “Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment: A Review.” Environ. Toxicol. Pharmacol., 57 115–130 (2018) Amara, I, Miled, W, Ben, Slama R, Ladhari, N, “Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment: A Review.” Environ. Toxicol. Pharmacol., 57 115–130 (2018)
11.
Zurück zum Zitat Idora, MSN, Ferry, M, Wan Nik, WB, Jasnizat, S, “Evaluation of Tannin from Rhizophora apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application.” Prog. Org. Coat., 81 125–131 (2015) Idora, MSN, Ferry, M, Wan Nik, WB, Jasnizat, S, “Evaluation of Tannin from Rhizophora apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application.” Prog. Org. Coat., 81 125–131 (2015)
12.
Zurück zum Zitat Pérez, M, García, M, Blustein, G, “Evaluation of Low Copper Content Antifouling Paints Containing Natural Phenolic Compounds as Bioactive Additives.” Mar. Environ. Res., 109 177–184 (2015) Pérez, M, García, M, Blustein, G, “Evaluation of Low Copper Content Antifouling Paints Containing Natural Phenolic Compounds as Bioactive Additives.” Mar. Environ. Res., 109 177–184 (2015)
13.
Zurück zum Zitat Bellotti, N, Deyá, C, Del Amo, B, Romagnoli, R, “Antifouling Paints with Zinc ‘Tannate’.” Ind. Eng. Chem. Res., 49 (7) 3386–3390 (2010) Bellotti, N, Deyá, C, Del Amo, B, Romagnoli, R, “Antifouling Paints with Zinc ‘Tannate’.” Ind. Eng. Chem. Res., 49 (7) 3386–3390 (2010)
14.
Zurück zum Zitat Cao, S, Wang, JD, Chen, HS, Chen, DR, “Progress of Marine Biofouling and Antifouling Technologies.” Chinese Sci. Bull., 56 (7) 598–612 (2011) Cao, S, Wang, JD, Chen, HS, Chen, DR, “Progress of Marine Biofouling and Antifouling Technologies.” Chinese Sci. Bull., 56 (7) 598–612 (2011)
15.
Zurück zum Zitat Qian, P, Li, Z, Xu, Y, Li, Y, Fusetani, N, “Mini-review: Marine Natural Products and Their Synthetic Analogs as Antifouling Compounds: 2009–2014.” Biofouling, 31 (1) 101–122 (2015) Qian, P, Li, Z, Xu, Y, Li, Y, Fusetani, N, “Mini-review: Marine Natural Products and Their Synthetic Analogs as Antifouling Compounds: 2009–2014.” Biofouling, 31 (1) 101–122 (2015)
16.
Zurück zum Zitat Ma, C, Zhang, W, Zhang, G, Qian, P, “Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant.” ACS Sustain. Chem. Eng., 5 (7) 6304–6309 (2017) Ma, C, Zhang, W, Zhang, G, Qian, P, “Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant.” ACS Sustain. Chem. Eng., 5 (7) 6304–6309 (2017)
18.
Zurück zum Zitat Escobar, A, et al., “Alkyl 2-Furoates Obtained by Green Chemistry Procedures as Suitable New Antifoulants for Marine Protective Coatings.” J. Coat. Technol. Res., 16 (1) 159–166 (2019) Escobar, A, et al., “Alkyl 2-Furoates Obtained by Green Chemistry Procedures as Suitable New Antifoulants for Marine Protective Coatings.” J. Coat. Technol. Res., 16 (1) 159–166 (2019)
19.
Zurück zum Zitat Punitha, N, Saravanan, P, Mohan, R, Ramesh, PS, “Antifouling Activities of β-Cyclodextrin Stabilized Peg Based Silver Nanocomposites.” Appl. Surf. Sci., 392 126–134 (2017) Punitha, N, Saravanan, P, Mohan, R, Ramesh, PS, “Antifouling Activities of β-Cyclodextrin Stabilized Peg Based Silver Nanocomposites.” Appl. Surf. Sci., 392 126–134 (2017)
20.
Zurück zum Zitat Verma, S, Mohanty, S, Nayak, SK, “A Review on Protective Polymeric Coatings for Marine Applications.” J. Coat. Technol. Res., 16 (2) 307–338 (2019) Verma, S, Mohanty, S, Nayak, SK, “A Review on Protective Polymeric Coatings for Marine Applications.” J. Coat. Technol. Res., 16 (2) 307–338 (2019)
21.
Zurück zum Zitat Ytreberg, E, Karlsson, J, Eklund, B, “Comparison of Toxicity and Release Rates of Cu and Zn from Anti-fouling Paints Leached in Natural and Artificial Brackish Seawater.” Sci. Total Environ., 408 (12) 2459–2466 (2010) Ytreberg, E, Karlsson, J, Eklund, B, “Comparison of Toxicity and Release Rates of Cu and Zn from Anti-fouling Paints Leached in Natural and Artificial Brackish Seawater.” Sci. Total Environ., 408 (12) 2459–2466 (2010)
22.
Zurück zum Zitat Achmad, AB, Synthesis of Metal-Tannate Complexes and Their Application as Antifoulant for Fish Cage Neys. University of Malaysia, Kuala Lumpur (2016) Achmad, AB, Synthesis of Metal-Tannate Complexes and Their Application as Antifoulant for Fish Cage Neys. University of Malaysia, Kuala Lumpur (2016)
23.
Zurück zum Zitat Zhang, X, et al., “An Eco- and User-Friendly Herbicide.” J. Agric. Food Chem., 67 (28) 7783–7792 (2019) Zhang, X, et al., “An Eco- and User-Friendly Herbicide.” J. Agric. Food Chem., 67 (28) 7783–7792 (2019)
24.
Zurück zum Zitat Lee, MRN, Kim, UJ, Lee, IS, Choi, M, Oh, JE, “Assessment of Organotin and Tin-Free Antifouling Paints Contamination in the Korean Coastal Area.” Mar. Pollut. Bull., 99 (1–2) 157–165 (2015) Lee, MRN, Kim, UJ, Lee, IS, Choi, M, Oh, JE, “Assessment of Organotin and Tin-Free Antifouling Paints Contamination in the Korean Coastal Area.” Mar. Pollut. Bull., 99 (1–2) 157–165 (2015)
25.
Zurück zum Zitat Lagerström, M, Yngsell, D, Eklund, B, Ytreberg, E, “Identification of Commercial and Recreational Vessels Coated with Banned Organotin Paint Through Screening of Tin by Portable XRF.” J. Hazard. Mater., 362 (September 2018) 107–114 (2019) Lagerström, M, Yngsell, D, Eklund, B, Ytreberg, E, “Identification of Commercial and Recreational Vessels Coated with Banned Organotin Paint Through Screening of Tin by Portable XRF.” J. Hazard. Mater., 362 (September 2018) 107–114 (2019)
26.
Zurück zum Zitat Nurioglu, AG, Esteves, ACC, de With, G, “Non-toxic, Non-biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015) Nurioglu, AG, Esteves, ACC, de With, G, “Non-toxic, Non-biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)
27.
Zurück zum Zitat Gopikrishnan, V, Radhakrishnan, M, Pazhanimurugan, R, Shanmugasundaram, T, Balagurunathan, R, “Natural Products: Potential and Less Explored Source for Antifouling Compounds.” J. Chem. Pharm. Res., 7 (7) 1144–1153 (2015) Gopikrishnan, V, Radhakrishnan, M, Pazhanimurugan, R, Shanmugasundaram, T, Balagurunathan, R, “Natural Products: Potential and Less Explored Source for Antifouling Compounds.” J. Chem. Pharm. Res., 7 (7) 1144–1153 (2015)
28.
Zurück zum Zitat Selim, MS, El-safty, SA, Shenashen, MA, Superhydrophobic Foul Resistant and Self-cleaning Polymer Coating. Elsevier, Amsterdam (2019) Selim, MS, El-safty, SA, Shenashen, MA, Superhydrophobic Foul Resistant and Self-cleaning Polymer Coating. Elsevier, Amsterdam (2019)
29.
Zurück zum Zitat Telegdi, J, Trif, L, Roma, L, “Smart Anti-biofouling Composite Coatings for Naval Applications.” In: Telegdi, J, Trif, L, Románszki, L (eds.) Composites Science and Engineering, pp. 123–155. Woodhead Publishing Limited, Sawston (2015) Telegdi, J, Trif, L, Roma, L, “Smart Anti-biofouling Composite Coatings for Naval Applications.” In: Telegdi, J, Trif, L, Románszki, L (eds.) Composites Science and Engineering, pp. 123–155. Woodhead Publishing Limited, Sawston (2015)
30.
Zurück zum Zitat Yan, T, Yan, WX, “Fouling of Offshore Structures in China—A Review.” Biofouling, 19 (supp 1) 133–138 (2003) Yan, T, Yan, WX, “Fouling of Offshore Structures in China—A Review.” Biofouling, 19 (supp 1) 133–138 (2003)
31.
Zurück zum Zitat Palanichamy, S, Subramanian, G, “Antifouling Properties of Marine Bacteriocin Incorporated Epoxy Based Paint.” Prog. Org. Coat., 103 33–39 (2017) Palanichamy, S, Subramanian, G, “Antifouling Properties of Marine Bacteriocin Incorporated Epoxy Based Paint.” Prog. Org. Coat., 103 33–39 (2017)
32.
Zurück zum Zitat Garcia, M, Stupak, M, Perez, M, Blustein, G, “Transitioning to Nontoxic Antifouling Paints.” Pigment Resin Technol., 44 (2) 116–121 (2015) Garcia, M, Stupak, M, Perez, M, Blustein, G, “Transitioning to Nontoxic Antifouling Paints.” Pigment Resin Technol., 44 (2) 116–121 (2015)
33.
Zurück zum Zitat Li, Y, Ning, C, “Latest Research Progress of Marine Microbiological Corrosion and Bio-fouling, and New Approaches of Marine Anti-corrosion and Anti-fouling.” Bioact. Mater., 4 (December) 189–195 (2019) Li, Y, Ning, C, “Latest Research Progress of Marine Microbiological Corrosion and Bio-fouling, and New Approaches of Marine Anti-corrosion and Anti-fouling.” Bioact. Mater., 4 (December) 189–195 (2019)
34.
Zurück zum Zitat Selim, MS, et al., “Modeling of Spherical Silver Nanoparticles in Silicone-Based Nanocomposites for Marine Antifouling.” RSC Adv., 5 (78) 63175–63185 (2015) Selim, MS, et al., “Modeling of Spherical Silver Nanoparticles in Silicone-Based Nanocomposites for Marine Antifouling.” RSC Adv., 5 (78) 63175–63185 (2015)
35.
Zurück zum Zitat Detty, MR, Ciriminna, R, Bright, FV, Pagliaro, M, “Environmentally Benign Sol–Gel Antifouling and Foul-Releasing Coatings.” Acc. Chem. Res., 47 678–687 (2014) Detty, MR, Ciriminna, R, Bright, FV, Pagliaro, M, “Environmentally Benign Sol–Gel Antifouling and Foul-Releasing Coatings.” Acc. Chem. Res., 47 678–687 (2014)
36.
Zurück zum Zitat Al-Fori, M, Dobretsov, S, Myint, MTZ, Dutta, J, “Antifouling Properties of Zinc Oxide Nanorod Coatings.” Biofouling, 30 (7) 871–882 (2014) Al-Fori, M, Dobretsov, S, Myint, MTZ, Dutta, J, “Antifouling Properties of Zinc Oxide Nanorod Coatings.” Biofouling, 30 (7) 871–882 (2014)
37.
Zurück zum Zitat Yang, WJ, Neoh, KG, Kang, ET, Teo, SLM, Rittschof, D, “Polymer Brush Coatings for Combating Marine Biofouling.” Prog. Polym. Sci., 39 (5) 1017–1042 (2014) Yang, WJ, Neoh, KG, Kang, ET, Teo, SLM, Rittschof, D, “Polymer Brush Coatings for Combating Marine Biofouling.” Prog. Polym. Sci., 39 (5) 1017–1042 (2014)
38.
Zurück zum Zitat Pugazhendhi, A, Prabakar, D, Jacob, JM, Karuppusamy, I, Saratale, RG, “Synthesis and Characterization of Silver Nanoparticles Using Gelidium amansii and Its Antimicrobial Property Against Various Pathogenic Bacteria.” Microb. Pathog., 114 41–45 (2018) Pugazhendhi, A, Prabakar, D, Jacob, JM, Karuppusamy, I, Saratale, RG, “Synthesis and Characterization of Silver Nanoparticles Using Gelidium amansii and Its Antimicrobial Property Against Various Pathogenic Bacteria.” Microb. Pathog., 114 41–45 (2018)
40.
Zurück zum Zitat Abed, RMM, Al Fahdi, D, Muthukrishnan, T, “Short-term Succession of Marine Microbial Fouling Communities and the Identification of Primary and Secondary Colonizers.” Biofouling, 35 526–540 (2019) Abed, RMM, Al Fahdi, D, Muthukrishnan, T, “Short-term Succession of Marine Microbial Fouling Communities and the Identification of Primary and Secondary Colonizers.” Biofouling, 35 526–540 (2019)
41.
Zurück zum Zitat Legg, M, Yücel, MK, Garcia De Carellan, I, Kappatos, V, Selcuk, C, Gan, TH, “Acoustic Methods for Biofouling Control: A Review.” Ocean Engineering, 103 237–247 (2015) Legg, M, Yücel, MK, Garcia De Carellan, I, Kappatos, V, Selcuk, C, Gan, TH, “Acoustic Methods for Biofouling Control: A Review.” Ocean Engineering, 103 237–247 (2015)
42.
Zurück zum Zitat Chapman, J, et al., “Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications.” Int. Biodeterior. Biodegrad., 86 6–13 (2014) Chapman, J, et al., “Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications.” Int. Biodeterior. Biodegrad., 86 6–13 (2014)
43.
Zurück zum Zitat Page, HM, Dugan, JE, Piltz, F, Fouling and Antifouling in Oil and Other Offshore Industries, pp. 252–266. Blackwell Publishing Ltd, Hoboken, NJ (2010) Page, HM, Dugan, JE, Piltz, F, Fouling and Antifouling in Oil and Other Offshore Industries, pp. 252–266. Blackwell Publishing Ltd, Hoboken, NJ (2010)
44.
Zurück zum Zitat Moodie, LWK, et al., “Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues.” J. Nat. Prod., 80 (7) 2001–2011 (2017) Moodie, LWK, et al., “Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues.” J. Nat. Prod., 80 (7) 2001–2011 (2017)
45.
Zurück zum Zitat Azemar, F, Faÿ, F, Réhel, K, Linossier, I, “Development of Hybrid Antifouling Paints.” Prog. Org. Coat., 87 10–19 (2015) Azemar, F, Faÿ, F, Réhel, K, Linossier, I, “Development of Hybrid Antifouling Paints.” Prog. Org. Coat., 87 10–19 (2015)
46.
Zurück zum Zitat Agostini, VO, Macedo, AJ, Muxagata, E, da Silva, MV, Pinho, GLL, “Natural and Non-toxic Products from Fabaceae Brazilian Plants as a Replacement for Traditional Antifouling Biocides: An Inhibition Potential Against Initial Biofouling.” Environ. Sci. Pollut. Res., 26 (26) 27112–27127 (2019) Agostini, VO, Macedo, AJ, Muxagata, E, da Silva, MV, Pinho, GLL, “Natural and Non-toxic Products from Fabaceae Brazilian Plants as a Replacement for Traditional Antifouling Biocides: An Inhibition Potential Against Initial Biofouling.” Environ. Sci. Pollut. Res., 26 (26) 27112–27127 (2019)
47.
Zurück zum Zitat Pradhan, S, Kumar, S, Mohanty, S, Nayak, SK, “Environmentally Benign Fouling-Resistant Marine Coatings: A Review.” Polym. Technol. Mater., 58 (5) 498–518 (2019) Pradhan, S, Kumar, S, Mohanty, S, Nayak, SK, “Environmentally Benign Fouling-Resistant Marine Coatings: A Review.” Polym. Technol. Mater., 58 (5) 498–518 (2019)
48.
Zurück zum Zitat Le Norcy, T, et al., “Anti-biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment.” Int. J. Mol. Sci., 18 (1520) 1–19 (2017) Le Norcy, T, et al., “Anti-biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment.” Int. J. Mol. Sci., 18 (1520) 1–19 (2017)
49.
Zurück zum Zitat Rossini, P, Napolano, L, Matteucci, G, “Biotoxicity and Life Cycle Assessment of Two Commercial Antifouling Coatings in Marine Systems.” Chemosphere, 237 124475 (2019) Rossini, P, Napolano, L, Matteucci, G, “Biotoxicity and Life Cycle Assessment of Two Commercial Antifouling Coatings in Marine Systems.” Chemosphere, 237 124475 (2019)
50.
Zurück zum Zitat Lagerström, M, Lindgren, JF, Holmqvist, A, Dahlström, M, Ytreberg, E, “In Situ Release Rates of Cu and Zn from Commercial Antifouling Paints at Different Salinities.” Mar. Pollut. Bull., 127 (December 2017) 289–296 (2018) Lagerström, M, Lindgren, JF, Holmqvist, A, Dahlström, M, Ytreberg, E, “In Situ Release Rates of Cu and Zn from Commercial Antifouling Paints at Different Salinities.” Mar. Pollut. Bull., 127 (December 2017) 289–296 (2018)
51.
Zurück zum Zitat Guardiola, FA, Cuesta, A, Meseguer, J, Esteban, MA, “Risks of Using Antifouling Biocides in Aquaculture.” Int. J. Mol. Sci., 13 (2) 1541–1560 (2012) Guardiola, FA, Cuesta, A, Meseguer, J, Esteban, MA, “Risks of Using Antifouling Biocides in Aquaculture.” Int. J. Mol. Sci., 13 (2) 1541–1560 (2012)
52.
Zurück zum Zitat Antizar-Ladislao, B, “Environmental Levels, Toxicity and Human Exposure to Tributyltin (TBT)-Contaminated Marine Environment: A Review.” Environ. Int., 34 292–308 (2008) Antizar-Ladislao, B, “Environmental Levels, Toxicity and Human Exposure to Tributyltin (TBT)-Contaminated Marine Environment: A Review.” Environ. Int., 34 292–308 (2008)
53.
Zurück zum Zitat Bray, S, Langston, W, Tributyltin Pollution on a Global Scale: An Overview of Relevant and Recent Research: Impacts and Issues. WWF, Godalming (2006) Bray, S, Langston, W, Tributyltin Pollution on a Global Scale: An Overview of Relevant and Recent Research: Impacts and Issues. WWF, Godalming (2006)
54.
Zurück zum Zitat Qian, P, Chen, L, Xu, Y, “Mini-review: Molecular Mechanisms of Antifouling Compounds.” Biofouling J. Bioadhesion Biofilm Res., 29 (4) 381–400 (2013) Qian, P, Chen, L, Xu, Y, “Mini-review: Molecular Mechanisms of Antifouling Compounds.” Biofouling J. Bioadhesion Biofilm Res., 29 (4) 381–400 (2013)
55.
Zurück zum Zitat Gibbs, PE, Bryan, GW, Pascoe, PL, Burt, GR, “The Use of the Dogwhelk, Nucella lapillus, as an Indicator of Tributyltin (TBT) Contamination.” J. Mar. Biol. Assoc. United Kingdom, 67 (3) 507–523 (1987) Gibbs, PE, Bryan, GW, Pascoe, PL, Burt, GR, “The Use of the Dogwhelk, Nucella lapillus, as an Indicator of Tributyltin (TBT) Contamination.” J. Mar. Biol. Assoc. United Kingdom, 67 (3) 507–523 (1987)
56.
Zurück zum Zitat Carteau, D, et al., “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Prog. Org. Coat., 77 (2) 485–493 (2014) Carteau, D, et al., “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Prog. Org. Coat., 77 (2) 485–493 (2014)
57.
Zurück zum Zitat Peres, RS, Armelin, E, Moreno-Martínez, JA, Alemán, C, Ferreira, CA, “Transport and Antifouling Properties of Papain-Based Antifouling Coatings.” Appl. Surf. Sci., 341 75–85 (2015) Peres, RS, Armelin, E, Moreno-Martínez, JA, Alemán, C, Ferreira, CA, “Transport and Antifouling Properties of Papain-Based Antifouling Coatings.” Appl. Surf. Sci., 341 75–85 (2015)
58.
Zurück zum Zitat Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res, 12 415–444 (2015) Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res, 12 415–444 (2015)
59.
Zurück zum Zitat Pei, X, Ye, Q, “Development of Marine Antifouling Coatings.” In: Zhou, F (ed.) Antifouling Surfaces and Materials, pp. 135–149. Springer, Berlin, Heidelberg (2015) Pei, X, Ye, Q, “Development of Marine Antifouling Coatings.” In: Zhou, F (ed.) Antifouling Surfaces and Materials, pp. 135–149. Springer, Berlin, Heidelberg (2015)
60.
Zurück zum Zitat Satheesh, S, Ba-Akdah, MA, Al-Sofyani, AA, “Natural Antifouling Compound Production by Microbes Associated with Marine Macroorganisms—A Review.” Electron. J. Biotechn., 21 (2015) 26–35 (2016) Satheesh, S, Ba-Akdah, MA, Al-Sofyani, AA, “Natural Antifouling Compound Production by Microbes Associated with Marine Macroorganisms—A Review.” Electron. J. Biotechn., 21 (2015) 26–35 (2016)
61.
Zurück zum Zitat Feng, K, Ni, C, Yu, L, Zhou, W, Li, X, “Synthesis and Antifouling Evaluation of Indole Derivatives.” Ecotoxicol. Environ. Saf., 182 (1) 109423 (2019) Feng, K, Ni, C, Yu, L, Zhou, W, Li, X, “Synthesis and Antifouling Evaluation of Indole Derivatives.” Ecotoxicol. Environ. Saf., 182 (1) 109423 (2019)
62.
Zurück zum Zitat Del Grosso, CA, McCarthy, TW, Clark, CL, Cloud, JL, Wilker, JJ, “Managing Redox Chemistry to Deter Marine Biological Adhesion.” Chem. Mater., 28 (18) 6791–6796 (2016) Del Grosso, CA, McCarthy, TW, Clark, CL, Cloud, JL, Wilker, JJ, “Managing Redox Chemistry to Deter Marine Biological Adhesion.” Chem. Mater., 28 (18) 6791–6796 (2016)
63.
Zurück zum Zitat Saxena, P, Joshi, Y, Rawat, K, Bisht, R, “Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms.” Indian J. Microbiol., 59 (1) 3–12 (2019) Saxena, P, Joshi, Y, Rawat, K, Bisht, R, “Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms.” Indian J. Microbiol., 59 (1) 3–12 (2019)
64.
Zurück zum Zitat Nir, S, Reches, M, “Bio-inspired Antifouling Approaches: The Quest Towards Non-toxic and Non-biocidal Materials.” Curr. Opin. Biotechnol., 39 (Figure 2) 48–55 (2016) Nir, S, Reches, M, “Bio-inspired Antifouling Approaches: The Quest Towards Non-toxic and Non-biocidal Materials.” Curr. Opin. Biotechnol., 39 (Figure 2) 48–55 (2016)
65.
Zurück zum Zitat Zhou, F, Antifouling Surfaces and Materials. Springer, New York (2015) Zhou, F, Antifouling Surfaces and Materials. Springer, New York (2015)
66.
Zurück zum Zitat Leonardi, AK, Ober, CK, “Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification.” Annu. Rev. Chem. Biomol. Eng., 10 (1) 241–264 (2019) Leonardi, AK, Ober, CK, “Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification.” Annu. Rev. Chem. Biomol. Eng., 10 (1) 241–264 (2019)
67.
Zurück zum Zitat Bao, Q, Xie, L, Ohashi, H, Hosomi, M, Terada, A, “Inhibition of Agrobacterium Tumefaciens Biofilm Formation by Acylase I-Immobilized Polymer Surface Grafting of a Zwitterionic Group-Containing Polymer Brush.” Biochem. Eng. J., 152 (May) 107372 (2019) Bao, Q, Xie, L, Ohashi, H, Hosomi, M, Terada, A, “Inhibition of Agrobacterium Tumefaciens Biofilm Formation by Acylase I-Immobilized Polymer Surface Grafting of a Zwitterionic Group-Containing Polymer Brush.” Biochem. Eng. J., 152 (May) 107372 (2019)
68.
Zurück zum Zitat Antunes, J, et al., “A Multi-bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides.” Mar. Drugs, 17 (2) 1–19 (2019) Antunes, J, et al., “A Multi-bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides.” Mar. Drugs, 17 (2) 1–19 (2019)
69.
Zurück zum Zitat Almeida, JR, Vasconcelos, V, “Natural Antifouling Compounds: Effectiveness in Preventing Invertebrate Settlement and Adhesion.” Biotechnol. Adv., 33 (3–4) 343–357 (2015) Almeida, JR, Vasconcelos, V, “Natural Antifouling Compounds: Effectiveness in Preventing Invertebrate Settlement and Adhesion.” Biotechnol. Adv., 33 (3–4) 343–357 (2015)
70.
Zurück zum Zitat Condren, AR, Kahl, LJ, Kritikos, G, Banzhaf, M, Dietrich, LEP, Sanchez, LM, “Biofilm Inhibitor Taurolithocholic Acid Alters Colony Morphology, Specialized Metabolism, and Virulence of Pseudomonas aeruginosa.” bioRxiv (2019). https://doi.org/10.1101/675405 Condren, AR, Kahl, LJ, Kritikos, G, Banzhaf, M, Dietrich, LEP, Sanchez, LM, “Biofilm Inhibitor Taurolithocholic Acid Alters Colony Morphology, Specialized Metabolism, and Virulence of Pseudomonas aeruginosa.” bioRxiv (2019). https://​doi.​org/​10.​1101/​675405
71.
Zurück zum Zitat Prakash, S, Ahila, NK, Sri Ramkumar, V, Ravindran, J, Kannapiran, E, “Antimicrofouling Properties of Chosen Marine Plants: An Eco-friendly Approach to Restrain Marine Microfoulers.” Biocatal. Agric. Biotechnol., 4 (1) 114–121 (2015) Prakash, S, Ahila, NK, Sri Ramkumar, V, Ravindran, J, Kannapiran, E, “Antimicrofouling Properties of Chosen Marine Plants: An Eco-friendly Approach to Restrain Marine Microfoulers.” Biocatal. Agric. Biotechnol., 4 (1) 114–121 (2015)
72.
Zurück zum Zitat Pérez, M, García, M, Blustein, G, Stupak, M, “Tannin and Tannate from the Quebracho Tree: An Eco-friendly Alternative for Controlling Marine Biofouling.” Biofouling, 23 (3) 151–159 (2007) Pérez, M, García, M, Blustein, G, Stupak, M, “Tannin and Tannate from the Quebracho Tree: An Eco-friendly Alternative for Controlling Marine Biofouling.” Biofouling, 23 (3) 151–159 (2007)
73.
Zurück zum Zitat Bacelo, HAM, Santos, SCR, Botelho, CMS, “Tannin-Based Biosorbents for Environmental Applications—A Review.” Chem. Eng. J., 303 575–587 (2016) Bacelo, HAM, Santos, SCR, Botelho, CMS, “Tannin-Based Biosorbents for Environmental Applications—A Review.” Chem. Eng. J., 303 575–587 (2016)
74.
Zurück zum Zitat Pérez, M, García, M, Ruiz, D, Autino, J, Romanelli, G, Blustein, G, “Antifouling Activity of Green-Synthesized 7-Hydroxy-4-Methylcoumarin.” Mar. Environ. Res., 113 134–140 (2016) Pérez, M, García, M, Ruiz, D, Autino, J, Romanelli, G, Blustein, G, “Antifouling Activity of Green-Synthesized 7-Hydroxy-4-Methylcoumarin.” Mar. Environ. Res., 113 134–140 (2016)
75.
Zurück zum Zitat Fusetani, N, “Antifouling Marine Natural Products.” Nat. Prod. Rep., 28 (2) 400–410 (2011) Fusetani, N, “Antifouling Marine Natural Products.” Nat. Prod. Rep., 28 (2) 400–410 (2011)
76.
Zurück zum Zitat Stupak, ME, Garcã, T, Pã, MC, “Non-toxic Alternative Compounds for Marine Antifouling Paints.” Int. Biodeterior. Biodegradation, 52 49–52 (2003) Stupak, ME, Garcã, T, Pã, MC, “Non-toxic Alternative Compounds for Marine Antifouling Paints.” Int. Biodeterior. Biodegradation, 52 49–52 (2003)
77.
Zurück zum Zitat Peres, RS, Baldissera, AF, Armelin, E, Alemán, C, Ferreira, CA, “Marine-Friendly Antifouling Coating Based on the Use of a Fatty Acid Derivative as a Pigment.” Mater. Res., 17 (3) 720–727 (2014) Peres, RS, Baldissera, AF, Armelin, E, Alemán, C, Ferreira, CA, “Marine-Friendly Antifouling Coating Based on the Use of a Fatty Acid Derivative as a Pigment.” Mater. Res., 17 (3) 720–727 (2014)
78.
Zurück zum Zitat Larrauri, M, Zunino, MP, Zygadlo, JA, Grosso, NR, Nepote, V, “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” Ind. Crops Prod., 94 964–971 (2016) Larrauri, M, Zunino, MP, Zygadlo, JA, Grosso, NR, Nepote, V, “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” Ind. Crops Prod., 94 964–971 (2016)
79.
Zurück zum Zitat Yakub, MK, Bello, MSGKAO, Oforghor, AO, “The Performance of 2-Nitroso-1-Naphthol Chelating Pigment in Paint Formulation with Gum Arabic and Polyvinyl Acetate as Binders, Paper I: UV–Visible Spectroscopy, Viscosity and Breaking Stress of the Paints.” African J. Sci. Technol., 8 (1) 28–38 (2007) Yakub, MK, Bello, MSGKAO, Oforghor, AO, “The Performance of 2-Nitroso-1-Naphthol Chelating Pigment in Paint Formulation with Gum Arabic and Polyvinyl Acetate as Binders, Paper I: UV–Visible Spectroscopy, Viscosity and Breaking Stress of the Paints.” African J. Sci. Technol., 8 (1) 28–38 (2007)
81.
Zurück zum Zitat Onyenekenwa, C, A Guide for the Paint Maker, 2nd ed. Welfare & Industrial Promotions (WIPRO) International, Enugu (2016) Onyenekenwa, C, A Guide for the Paint Maker, 2nd ed. Welfare & Industrial Promotions (WIPRO) International, Enugu (2016)
82.
Zurück zum Zitat Sanyal, B, “Organic Compounds as Corrosion Inhibitors in Different Environments—A Review.” Prog. Org. Coat., 9 (2) 165–236 (1981) Sanyal, B, “Organic Compounds as Corrosion Inhibitors in Different Environments—A Review.” Prog. Org. Coat., 9 (2) 165–236 (1981)
83.
Zurück zum Zitat Mohammadian, M, Sahraei, R, Ghaemy, M, “Synthesis and Fabrication of Antibacterial Hydrogel Beads Based on Modified-Gum Tragacanth/Poly(vinyl alcohol)/Ag0 Highly Efficient Sorbent for Hard Water Softening.” Chemosphere, 225 259–269 (2019) Mohammadian, M, Sahraei, R, Ghaemy, M, “Synthesis and Fabrication of Antibacterial Hydrogel Beads Based on Modified-Gum Tragacanth/Poly(vinyl alcohol)/Ag0 Highly Efficient Sorbent for Hard Water Softening.” Chemosphere, 225 259–269 (2019)
84.
Zurück zum Zitat Gadkari, PV, Balaraman, M, “Catechin: Sources, Extraction and Encapsulation: A Review.” Food Bioprod. Process., 93 122–138 (2015) Gadkari, PV, Balaraman, M, “Catechin: Sources, Extraction and Encapsulation: A Review.” Food Bioprod. Process., 93 122–138 (2015)
85.
Zurück zum Zitat Srivastava, R, Srivastava, D, “Mechanical, Chemical, and Curing Characteristics of Cardanol—Furfural-Based Novolac Resin for Application in Green Coatings.” J. Coat. Technol. Res., 12 (2) 303–311 (2015) Srivastava, R, Srivastava, D, “Mechanical, Chemical, and Curing Characteristics of Cardanol—Furfural-Based Novolac Resin for Application in Green Coatings.” J. Coat. Technol. Res., 12 (2) 303–311 (2015)
86.
Zurück zum Zitat Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 (1) 244 (2011) Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 (1) 244 (2011)
88.
Zurück zum Zitat da Gama, BAP, Plouguerné, E, Pereira, RC, “The Antifouling Defence Mechanisms of Marine Macroalgae.” In: Jacquot, J-P, Gadal, P, Bourgougnon, N (eds.) Advances in Botanical Research, vol. 71, pp. 413–440. Elsevier, Amsterdam (2014) da Gama, BAP, Plouguerné, E, Pereira, RC, “The Antifouling Defence Mechanisms of Marine Macroalgae.” In: Jacquot, J-P, Gadal, P, Bourgougnon, N (eds.) Advances in Botanical Research, vol. 71, pp. 413–440. Elsevier, Amsterdam (2014)
89.
Zurück zum Zitat Higaki, Y, Kobayashi, M, Murakami, D, Takahara, A, “Anti-fouling Behavior of Polymer Brush Immobilized Surfaces.” Polym. J., 48 (4) 325–331 (2016) Higaki, Y, Kobayashi, M, Murakami, D, Takahara, A, “Anti-fouling Behavior of Polymer Brush Immobilized Surfaces.” Polym. J., 48 (4) 325–331 (2016)
90.
Zurück zum Zitat Yandi, W, et al., “Charged Hydrophilic Polymer Brushes and Their Relevance for Understanding Marine Biofouling.” Biofouling, 32 (6) 609–625 (2016) Yandi, W, et al., “Charged Hydrophilic Polymer Brushes and Their Relevance for Understanding Marine Biofouling.” Biofouling, 32 (6) 609–625 (2016)
91.
Zurück zum Zitat Gao, K, et al., “Creation of Active-Passive Integrated Mechanisms on Membrane Surfaces for Superior Antifouling and Antibacterial Properties.” J. Memb. Sci., 548 621–631 (2018) Gao, K, et al., “Creation of Active-Passive Integrated Mechanisms on Membrane Surfaces for Superior Antifouling and Antibacterial Properties.” J. Memb. Sci., 548 621–631 (2018)
92.
Zurück zum Zitat Hibbs, MR, Hernandez-Sanchez, BA, Daniels, J, Stafslien, SJ, “Polysulfone and Polyacrylate-Based Zwitterionic Coatings for the Prevention and Easy Removal of Marine Biofouling.” Biofouling, 31 (7) 613–624 (2015) Hibbs, MR, Hernandez-Sanchez, BA, Daniels, J, Stafslien, SJ, “Polysulfone and Polyacrylate-Based Zwitterionic Coatings for the Prevention and Easy Removal of Marine Biofouling.” Biofouling, 31 (7) 613–624 (2015)
93.
Zurück zum Zitat Brzozowska, AM, et al., “Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers.” ACS Appl. Mater. Interfaces, 9 (20) 17508–17516 (2017) Brzozowska, AM, et al., “Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers.” ACS Appl. Mater. Interfaces, 9 (20) 17508–17516 (2017)
94.
Zurück zum Zitat Acevedo, MS, et al., “Antifouling Paints Based on Marine Natural Products from Colombian Caribbean.” Int. Biodeterior. Biodegrad., 83 97–104 (2013) Acevedo, MS, et al., “Antifouling Paints Based on Marine Natural Products from Colombian Caribbean.” Int. Biodeterior. Biodegrad., 83 97–104 (2013)
95.
Zurück zum Zitat Xie, Q, Xie, Q, Pan, J, Ma, C, Zhang, G, “Biodegradable Polymer with Hydrolysis Induced Zwitterions for Antibiofouling.” ACS Appl. Mater. Interfaces, 10 (13) 11213–11220 (2018) Xie, Q, Xie, Q, Pan, J, Ma, C, Zhang, G, “Biodegradable Polymer with Hydrolysis Induced Zwitterions for Antibiofouling.” ACS Appl. Mater. Interfaces, 10 (13) 11213–11220 (2018)
96.
Zurück zum Zitat Mohanty, A, Misra, M, Drzal, L, Selke, S, Harte, B, Hinrichsen, G, “Natural Fibers, Biopolymers, and Biocomposites.” In: Mohanty, AK, Misra, M, Drzal, LT (eds.) Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, London (2010) Mohanty, A, Misra, M, Drzal, L, Selke, S, Harte, B, Hinrichsen, G, “Natural Fibers, Biopolymers, and Biocomposites.” In: Mohanty, AK, Misra, M, Drzal, LT (eds.) Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, London (2010)
97.
Zurück zum Zitat Doppalapudi, S, Jain, A, Khan, W, Domb, AJ, “Biodegradable Polymers—An Overview.” Polym. Adv. Technol., 25 (5) 427–435 (2014) Doppalapudi, S, Jain, A, Khan, W, Domb, AJ, “Biodegradable Polymers—An Overview.” Polym. Adv. Technol., 25 (5) 427–435 (2014)
98.
Zurück zum Zitat Lochab, B, Shukla, S, Varma, IK, “Naturally Occurring Phenolic Sources: Monomers and Polymers.” RSC Adv., 4 (42) 21712–21752 (2014) Lochab, B, Shukla, S, Varma, IK, “Naturally Occurring Phenolic Sources: Monomers and Polymers.” RSC Adv., 4 (42) 21712–21752 (2014)
99.
Zurück zum Zitat Sumrith, N, Rangappa, SM, “Biopolymers-Based Nanocomposites: Properties and Applications.” In: Sanyang, ML, Jawaid, M (eds.) Bio-based Polymers and Nanocomposites, pp. 255–272. Springer, Cham (2019) Sumrith, N, Rangappa, SM, “Biopolymers-Based Nanocomposites: Properties and Applications.” In: Sanyang, ML, Jawaid, M (eds.) Bio-based Polymers and Nanocomposites, pp. 255–272. Springer, Cham (2019)
100.
Zurück zum Zitat Katarzyna, L, Grazyna, L, “Polymer Biodegradation and Biodegradable Polymers—A Review.” Polish J. Environ. Stud., 19 (2) 255–266 (2010) Katarzyna, L, Grazyna, L, “Polymer Biodegradation and Biodegradable Polymers—A Review.” Polish J. Environ. Stud., 19 (2) 255–266 (2010)
101.
Zurück zum Zitat Hu, Q, Luo, Y, “Polyphenol-Chitosan Conjugates: Synthesis, Characterization, and Applications.” Carbohydr. Polym., 151 624–639 (2016) Hu, Q, Luo, Y, “Polyphenol-Chitosan Conjugates: Synthesis, Characterization, and Applications.” Carbohydr. Polym., 151 624–639 (2016)
102.
Zurück zum Zitat Chen, S, Ma, C, Zhang, G, “Biodegradable Polymers for Marine Antibiofouling: Poly(ε-Caprolactone)/Poly(Butylene Succinate) Blend as Controlled Release System of Organic Antifoulant.” Polymer (Guildf), 90 215–221 (2016) Chen, S, Ma, C, Zhang, G, “Biodegradable Polymers for Marine Antibiofouling: Poly(ε-Caprolactone)/Poly(Butylene Succinate) Blend as Controlled Release System of Organic Antifoulant.” Polymer (Guildf), 90 215–221 (2016)
103.
Zurück zum Zitat Tosin, M, Pischedda, A, Degli-Innocenti, F, “Biodegradation Kinetics in Soil of a Multi-constituent Biodegradable Plastic.” Polym. Degrad. Stab., 166 213–218 (2019) Tosin, M, Pischedda, A, Degli-Innocenti, F, “Biodegradation Kinetics in Soil of a Multi-constituent Biodegradable Plastic.” Polym. Degrad. Stab., 166 213–218 (2019)
104.
Zurück zum Zitat Mothé, CG, Vieira, CR, Mothé, MG, “Thermal and Surface Study of Phenolic Resin From Cashew Nut Shell Liquid Cured by Plasma Treatment.” J. Therm. Anal. Calorim., 114 (2) 821–826 (2013) Mothé, CG, Vieira, CR, Mothé, MG, “Thermal and Surface Study of Phenolic Resin From Cashew Nut Shell Liquid Cured by Plasma Treatment.” J. Therm. Anal. Calorim., 114 (2) 821–826 (2013)
105.
Zurück zum Zitat Balgude, D, Sabnis, AS, “CNSL: An Environment Friendly Alternative for the Modern Coating Industry.” J. Coat. Technol. Res., 11 (2) 169–183 (2014) Balgude, D, Sabnis, AS, “CNSL: An Environment Friendly Alternative for the Modern Coating Industry.” J. Coat. Technol. Res., 11 (2) 169–183 (2014)
106.
Zurück zum Zitat Lomonaco, D, Giuseppe, M, Mazzetto, S, “Cashew Nut Shell Liquid: A Goldfield for Functional Materials.” In: Anilkumar, P (ed.) Cashew Nut Shell Liquid: A Goldfield for Functional Materials, pp. 1–230. Springer, New York (2017) Lomonaco, D, Giuseppe, M, Mazzetto, S, “Cashew Nut Shell Liquid: A Goldfield for Functional Materials.” In: Anilkumar, P (ed.) Cashew Nut Shell Liquid: A Goldfield for Functional Materials, pp. 1–230. Springer, New York (2017)
107.
Zurück zum Zitat Jaillet, F, Darroman, E, Ratsimihety, A, Auvergne, R, Boutevin, B, Caillol, S, “New Biobased Epoxy Materials from Cardanol.” Eur. J. Lipid Sci. Technol., 116 (1) 63–73 (2014) Jaillet, F, Darroman, E, Ratsimihety, A, Auvergne, R, Boutevin, B, Caillol, S, “New Biobased Epoxy Materials from Cardanol.” Eur. J. Lipid Sci. Technol., 116 (1) 63–73 (2014)
108.
Zurück zum Zitat Andrews, SGJ, Rama, V, Mythili, CV, “Synthesis and Characterization of Polymer Resins from Renewable Resource.” Int. J. Plast. Technol., 21 (2) 427–443 (2017) Andrews, SGJ, Rama, V, Mythili, CV, “Synthesis and Characterization of Polymer Resins from Renewable Resource.” Int. J. Plast. Technol., 21 (2) 427–443 (2017)
110.
Zurück zum Zitat Quirino, RL, Garrison, TF, Kessler, MR, “Matrices from Vegetable Oils, Cashew Nut Shell Liquid, and Other Relevant Systems for Biocomposite Applications.” Green Chemistry, 16 (4) 1700–1715 (2014) Quirino, RL, Garrison, TF, Kessler, MR, “Matrices from Vegetable Oils, Cashew Nut Shell Liquid, and Other Relevant Systems for Biocomposite Applications.” Green Chemistry, 16 (4) 1700–1715 (2014)
111.
Zurück zum Zitat Vedharaj, S, Vallinayagam, R, Yang, WM, Saravanan, CG, Roberts, WL, “Synthesis and Utilization of Catalytically Cracked Cashew Nut Shell Liquid in a Diesel Engine.” Exp. Therm. Fluid Sci., 70 316–324 (2016) Vedharaj, S, Vallinayagam, R, Yang, WM, Saravanan, CG, Roberts, WL, “Synthesis and Utilization of Catalytically Cracked Cashew Nut Shell Liquid in a Diesel Engine.” Exp. Therm. Fluid Sci., 70 316–324 (2016)
112.
Zurück zum Zitat Telascrêa, M, Leão, AL, Ferreira, MZ, Pupo, HFF, Cherian, BM, Narine, S, “Use of a Cashew Nut Shell Liquid Resin as a Potential Replacement for Phenolic Resins in the Preparation of Panels—A Review.” Mol. Cryst. Liq. Cryst., 604 (1) 222–232 (2014) Telascrêa, M, Leão, AL, Ferreira, MZ, Pupo, HFF, Cherian, BM, Narine, S, “Use of a Cashew Nut Shell Liquid Resin as a Potential Replacement for Phenolic Resins in the Preparation of Panels—A Review.” Mol. Cryst. Liq. Cryst., 604 (1) 222–232 (2014)
113.
Zurück zum Zitat Mahanwar, PA, Kale, DD, “Effect of Cashew Nut Shell Liquid (CNSL) on Properties of Phenolic Resins.” J. Appl. Polym. Sci., 61 (12) 2107–2111 (1996) Mahanwar, PA, Kale, DD, “Effect of Cashew Nut Shell Liquid (CNSL) on Properties of Phenolic Resins.” J. Appl. Polym. Sci., 61 (12) 2107–2111 (1996)
115.
Zurück zum Zitat Gedam, PH, Sampathkumaran, PS, “Cashew Nut Shell Liquid: Extraction, Chemistry and Applications.” Prog. Org. Coat., 14 (2) 115–157 (1986) Gedam, PH, Sampathkumaran, PS, “Cashew Nut Shell Liquid: Extraction, Chemistry and Applications.” Prog. Org. Coat., 14 (2) 115–157 (1986)
116.
Zurück zum Zitat Wazarkar, K, Sabnis, A, “Cardanol Based Anhydride Curing Agent for Epoxy Coatings.” Prog. Org. Coat., 118 (August 2017) 9–21 (2018) Wazarkar, K, Sabnis, A, “Cardanol Based Anhydride Curing Agent for Epoxy Coatings.” Prog. Org. Coat., 118 (August 2017) 9–21 (2018)
117.
Zurück zum Zitat Edoga, MO, Fadipa, L, Edoga, RN, “Extraction of Polyphenols from Cashew Nut Shell.” Leonardo Electron. J. Pract. Technol., 5 (9) 107–112 (2006) Edoga, MO, Fadipa, L, Edoga, RN, “Extraction of Polyphenols from Cashew Nut Shell.” Leonardo Electron. J. Pract. Technol., 5 (9) 107–112 (2006)
118.
Zurück zum Zitat Kathalewar, M, Sabnis, A, D’Melo, D, “Polyurethane Coatings Prepared from CNSL Based Polyols: Synthesis, Characterization, and Properties.” Prog. Org. Coat., 77 (3) 616–626 (2014) Kathalewar, M, Sabnis, A, D’Melo, D, “Polyurethane Coatings Prepared from CNSL Based Polyols: Synthesis, Characterization, and Properties.” Prog. Org. Coat., 77 (3) 616–626 (2014)
119.
Zurück zum Zitat Sheng, C, Wenting, B, Shijian, T, Yuechuan, W, “Preparation of Cardanol-Formaldehyde Resins from Cashew Nut Shell Liquid for the Reinforcement of Natural Rubber.” Appl. Polym. Sci., 104 1997–2002 (2008) Sheng, C, Wenting, B, Shijian, T, Yuechuan, W, “Preparation of Cardanol-Formaldehyde Resins from Cashew Nut Shell Liquid for the Reinforcement of Natural Rubber.” Appl. Polym. Sci., 104 1997–2002 (2008)
120.
Zurück zum Zitat Ugoamadi, CC, “Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester Resin in Composite Development.” Niger. J. Technol. Dev., 10 (2) 17–21 (2013) Ugoamadi, CC, “Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester Resin in Composite Development.” Niger. J. Technol. Dev., 10 (2) 17–21 (2013)
121.
Zurück zum Zitat Lubi, MC, Thachil, ET, “Cashew Nut Shell Liquid (CNSL)—A Versatile Monomer for Polymer Synthesis.” Des. Monomers Polym., 3 (2) 123–153 (2000) Lubi, MC, Thachil, ET, “Cashew Nut Shell Liquid (CNSL)—A Versatile Monomer for Polymer Synthesis.” Des. Monomers Polym., 3 (2) 123–153 (2000)
122.
Zurück zum Zitat Sharma, SK, et al., “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” J. Appl. Polym. Sci., 73 (2) 1–10 (2015) Sharma, SK, et al., “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” J. Appl. Polym. Sci., 73 (2) 1–10 (2015)
123.
Zurück zum Zitat Tawade, BV, Salunke, JK, Sane, PS, Wadgaonkar, PP, “Processable Aromatic Polyesters Based on Bisphenol Derived from Cashew Nut Shell Liquid: Synthesis and Characterization.” J. Polym. Res., 21 (12) 1–10 (2014) Tawade, BV, Salunke, JK, Sane, PS, Wadgaonkar, PP, “Processable Aromatic Polyesters Based on Bisphenol Derived from Cashew Nut Shell Liquid: Synthesis and Characterization.” J. Polym. Res., 21 (12) 1–10 (2014)
124.
Zurück zum Zitat Mubofu, EB, “From Cashew Nut Shell Wastes to High Value Chemicals.” Pure Appl. Chem., 88 (1–2) 17–27 (2016) Mubofu, EB, “From Cashew Nut Shell Wastes to High Value Chemicals.” Pure Appl. Chem., 88 (1–2) 17–27 (2016)
125.
Zurück zum Zitat Sahoo, SK, Swain, SK, Mohapatra, DK, Nayak, PL, Lenka, S, “Polymers from Renewable Resources, V. Synthesis and Characterization of Thermosetting Resins Derived from Cashew Nut Shell Liquid (CNSL)—Furfural-Substituted Aromatic Compounds.” J. Appl. Polym. Sci., 54 1413–1421 (1994) Sahoo, SK, Swain, SK, Mohapatra, DK, Nayak, PL, Lenka, S, “Polymers from Renewable Resources, V. Synthesis and Characterization of Thermosetting Resins Derived from Cashew Nut Shell Liquid (CNSL)—Furfural-Substituted Aromatic Compounds.” J. Appl. Polym. Sci., 54 1413–1421 (1994)
126.
Zurück zum Zitat Gandhi, T, Patel, M, Dholakiya, BK, “Studies on Effect of Various Solvents on Extraction of Cashew Nut Shell Liquid (CNSL) and Isolation of Major Phenolic Constituents From Extracted CNSL.” J. Nat. Prod. Plant Resour., 2 (1) 135–142 (2012) Gandhi, T, Patel, M, Dholakiya, BK, “Studies on Effect of Various Solvents on Extraction of Cashew Nut Shell Liquid (CNSL) and Isolation of Major Phenolic Constituents From Extracted CNSL.” J. Nat. Prod. Plant Resour., 2 (1) 135–142 (2012)
127.
Zurück zum Zitat Gandhi, TS, Dholakiya, BZ, Patel, MR, “Extraction Protocol for Isolation of CNSL by Using Protic and Aprotic Solvents from Cashew Nut and Study of Their Physico-Chemical Parameter.” Polish J. Chem. Technol., 15 (4) 24–27 (2013) Gandhi, TS, Dholakiya, BZ, Patel, MR, “Extraction Protocol for Isolation of CNSL by Using Protic and Aprotic Solvents from Cashew Nut and Study of Their Physico-Chemical Parameter.” Polish J. Chem. Technol., 15 (4) 24–27 (2013)
128.
Zurück zum Zitat Li, C, Yu, H, Li, F, Zhang, Z, Huang, J, Wang, J, “Physicochemical Properties of Series of Cardanol Polyoxyethylene Ether Carboxylates with Different Ethoxylation Unit at the Interface.” J. Dispers. Sci. Technol., 40 (1) 9–16 (2018) Li, C, Yu, H, Li, F, Zhang, Z, Huang, J, Wang, J, “Physicochemical Properties of Series of Cardanol Polyoxyethylene Ether Carboxylates with Different Ethoxylation Unit at the Interface.” J. Dispers. Sci. Technol., 40 (1) 9–16 (2018)
129.
Zurück zum Zitat Keetasombat, K, Soykeabkaew, N, “Coating Based on Cashew Nut Shell Liquid Resin.” 26th Annu. Meet. Thai Soc. Biotechnol. Int. Conf. pp. 145–153, 2014 Keetasombat, K, Soykeabkaew, N, “Coating Based on Cashew Nut Shell Liquid Resin.” 26th Annu. Meet. Thai Soc. Biotechnol. Int. Conf. pp. 145–153, 2014
130.
Zurück zum Zitat Jaillet, F, Nouailhas, H, Boutevin, B, Caillol, S, “Synthesis of Novel Bio-based Vinyl Ester from Dicyclopentadiene Prepolymer, Cashew Nut Shell Liquid, and Soybean Oil.” Eur. J. Lipid Sci. Technol., 118 (9) 1336–1349 (2016) Jaillet, F, Nouailhas, H, Boutevin, B, Caillol, S, “Synthesis of Novel Bio-based Vinyl Ester from Dicyclopentadiene Prepolymer, Cashew Nut Shell Liquid, and Soybean Oil.” Eur. J. Lipid Sci. Technol., 118 (9) 1336–1349 (2016)
131.
Zurück zum Zitat Kanehashi, S, Masuda, R, Yokoyama, K, Kanamoto, T, Nakashima, H, Miyakoshi, T, “Development of a Cashew Nut Shell Liquid (CNSL)-Based Polymer for Antibacterial Activity.” J. Appl. Polym. Sci., 132 (45) 1–9 (2015) Kanehashi, S, Masuda, R, Yokoyama, K, Kanamoto, T, Nakashima, H, Miyakoshi, T, “Development of a Cashew Nut Shell Liquid (CNSL)-Based Polymer for Antibacterial Activity.” J. Appl. Polym. Sci., 132 (45) 1–9 (2015)
132.
Zurück zum Zitat Campaner, P, D’Amico, D, Longo, L, Stifani, C, Tarzia, A, “Cardanol-Based Novolac Resins as Curing Agents of Epoxy Resins.” Polym. Polym. Compos., 114 3585–3591 (2009) Campaner, P, D’Amico, D, Longo, L, Stifani, C, Tarzia, A, “Cardanol-Based Novolac Resins as Curing Agents of Epoxy Resins.” Polym. Polym. Compos., 114 3585–3591 (2009)
133.
Zurück zum Zitat Aggarwal, LK, Thapliyal, PC, Karade, SR, “Anticorrosive Properties of the Epoxy-Cardanol Resin Based Paints.” Prog. Org. Coat., 59 (1) 76–80 (2007) Aggarwal, LK, Thapliyal, PC, Karade, SR, “Anticorrosive Properties of the Epoxy-Cardanol Resin Based Paints.” Prog. Org. Coat., 59 (1) 76–80 (2007)
134.
Zurück zum Zitat Pathak, SK, Rao, BS, “Structural Effect of Phenalkamines on Adhesive Viscoelastic and Thermal Properties of Epoxy Networks.” J. Appl. Polym. Sci., 102 4741–4748 (2006) Pathak, SK, Rao, BS, “Structural Effect of Phenalkamines on Adhesive Viscoelastic and Thermal Properties of Epoxy Networks.” J. Appl. Polym. Sci., 102 4741–4748 (2006)
135.
Zurück zum Zitat Kim, Y, An Suk, E, Park Young, S, Song Keun, B, “Enzymatic Epoxidation and Polymerization of Cardanol Obtained from a Renewable Resource and Curing of Epoxide-Containing Polycardanol.” J. Molecular Catal. B Enzym., 45 39–44 (2007) Kim, Y, An Suk, E, Park Young, S, Song Keun, B, “Enzymatic Epoxidation and Polymerization of Cardanol Obtained from a Renewable Resource and Curing of Epoxide-Containing Polycardanol.” J. Molecular Catal. B Enzym., 45 39–44 (2007)
136.
Zurück zum Zitat Tan, MT, Nieu, HN, “Carbon Fiber Cardanol-Epoxy Composites.” J. Appl. Polym. Sci., 61 133–137 (1996) Tan, MT, Nieu, HN, “Carbon Fiber Cardanol-Epoxy Composites.” J. Appl. Polym. Sci., 61 133–137 (1996)
137.
Zurück zum Zitat Bhunia, HP, Nandoa, GB, Chakia, TK, Nando, GB, “Synthesis and Characterization of Polymers from Cashewnut Shell Liquid (CNSL), A Renewable Resource II. Synthesis of Polyurethanes.” Eur. Polym. J., 35 (8) 1381–1391 (1999) Bhunia, HP, Nandoa, GB, Chakia, TK, Nando, GB, “Synthesis and Characterization of Polymers from Cashewnut Shell Liquid (CNSL), A Renewable Resource II. Synthesis of Polyurethanes.” Eur. Polym. J., 35 (8) 1381–1391 (1999)
139.
Zurück zum Zitat Lu, Y, Larock, RC, “Corn Oil-Based Composites Reinforced with Continuous Glass Fibers: Fabrication and Properties.” J. Appl. Polym. Sci., 102 (4) 3345–3353 (2006) Lu, Y, Larock, RC, “Corn Oil-Based Composites Reinforced with Continuous Glass Fibers: Fabrication and Properties.” J. Appl. Polym. Sci., 102 (4) 3345–3353 (2006)
140.
Zurück zum Zitat Larock, RC, Natural Oil-Based Composites Reinforced with Natural Fillers, and Conjugation/Isomerization of Carbon–Carbon Double Bonds. Iowa State University, Iowa (2011) Larock, RC, Natural Oil-Based Composites Reinforced with Natural Fillers, and Conjugation/Isomerization of Carbon–Carbon Double Bonds. Iowa State University, Iowa (2011)
141.
Zurück zum Zitat Dutta, N, Karak, N, Dolui, SK, “Synthesis and Characterization of Polyester Resins Based on Nahar Seed Oil.” Prog. Org. Coat., 49 (2) 146–152 (2004) Dutta, N, Karak, N, Dolui, SK, “Synthesis and Characterization of Polyester Resins Based on Nahar Seed Oil.” Prog. Org. Coat., 49 (2) 146–152 (2004)
142.
Zurück zum Zitat Flores, S, Flores, A, Calderón, C, Obregón, D, “Synthesis and Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil-Based Alkyd Resin.” Prog. Org. Coat., 136 (1) 105289 (2019) Flores, S, Flores, A, Calderón, C, Obregón, D, “Synthesis and Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil-Based Alkyd Resin.” Prog. Org. Coat., 136 (1) 105289 (2019)
143.
Zurück zum Zitat Vanholme, R, De Meester, B, Ralph, J, Boerjan, W, “Lignin Biosynthesis and Its Integration into Metabolism.” Curr. Opin. Biotechnol., 56 (Table 1) 230–239 (2019) Vanholme, R, De Meester, B, Ralph, J, Boerjan, W, “Lignin Biosynthesis and Its Integration into Metabolism.” Curr. Opin. Biotechnol., 56 (Table 1) 230–239 (2019)
144.
Zurück zum Zitat Rautiainen, S, Di Francesco, D, Katea, SN, Westin, G, Tungasmita, DN, Samec, JSM, “Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.” ChemSusChem, 12 (2) 404–408 (2018) Rautiainen, S, Di Francesco, D, Katea, SN, Westin, G, Tungasmita, DN, Samec, JSM, “Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.” ChemSusChem, 12 (2) 404–408 (2018)
145.
Zurück zum Zitat Vaithilingam, S, Jayanthi, J, Muthukaruppan, A, “Synthesis and Characterization of Cardanol Based Fluorescent Composite for Optoelectronic and Antimicrobial Applications.” Polymer (Guildf)., 108 449–461 (2017) Vaithilingam, S, Jayanthi, J, Muthukaruppan, A, “Synthesis and Characterization of Cardanol Based Fluorescent Composite for Optoelectronic and Antimicrobial Applications.” Polymer (Guildf)., 108 449–461 (2017)
146.
Zurück zum Zitat Rahim, AA, Rocca, E, Steinmetz, J, Kassim, MJ, Adnan, R, Sani Ibrahim, M, “Mangrove Tannins and Their Flavanoid Monomers as Alternative Steel Corrosion Inhibitors in Acidic Medium.” Corros. Sci., 49 (2) 402–417 (2007) Rahim, AA, Rocca, E, Steinmetz, J, Kassim, MJ, Adnan, R, Sani Ibrahim, M, “Mangrove Tannins and Their Flavanoid Monomers as Alternative Steel Corrosion Inhibitors in Acidic Medium.” Corros. Sci., 49 (2) 402–417 (2007)
147.
Zurück zum Zitat Peres, RS, Armelin, E, Alemán, C, Ferreira, CA, “Modified Tannin Extracted from Black Wattle Tree as an Environmentally Friendly Antifouling Pigment.” Ind. Crops Prod., 65 506–514 (2015) Peres, RS, Armelin, E, Alemán, C, Ferreira, CA, “Modified Tannin Extracted from Black Wattle Tree as an Environmentally Friendly Antifouling Pigment.” Ind. Crops Prod., 65 506–514 (2015)
148.
Zurück zum Zitat Altemimi, A, Lakhssassi, N, Baharlouei, A, Watson, D, Lightfoot, D, “Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts.” Plants, 6 (4) 42 (2017) Altemimi, A, Lakhssassi, N, Baharlouei, A, Watson, D, Lightfoot, D, “Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts.” Plants, 6 (4) 42 (2017)
149.
Zurück zum Zitat Vladimir-Knežević, S, Blažeković, B, Štefan, MB, Babac, M, Plant Polyphenols as Antioxidants Influencing the Human Health. In: Rao, V (ed.) Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health, pp. 155–180, ISBN: 978-953-51-0203-8, China: InTech (2012) Vladimir-Knežević, S, Blažeković, B, Štefan, MB, Babac, M, Plant Polyphenols as Antioxidants Influencing the Human Health. In: Rao, V (ed.) Phytochemicals as NutraceuticalsGlobal Approaches to Their Role in Nutrition and Health, pp. 155–180, ISBN: 978-953-51-0203-8, China: InTech (2012)
150.
Zurück zum Zitat Hutzinger, O, Antifouling Paints Biocides, 5th ed. Springer, Berlin (2006) Hutzinger, O, Antifouling Paints Biocides, 5th ed. Springer, Berlin (2006)
151.
Zurück zum Zitat Gutner-Hoch, E, et al., “Antimacrofouling Efficacy of Innovative Inorganic Nanomaterials Loaded with Booster Biocides.” J. Mar. Sci. Eng., 6 (1) 6 (2018) Gutner-Hoch, E, et al., “Antimacrofouling Efficacy of Innovative Inorganic Nanomaterials Loaded with Booster Biocides.” J. Mar. Sci. Eng., 6 (1) 6 (2018)
153.
Zurück zum Zitat Dai, G, Xie, Q, Ma, C, Zhang, G, “Biodegradable Poly(Ester-co-Acrylate) with Antifoulant Pendant Groups for Marine Anti-biofouling.” ACS Appl. Mater. Interfaces, 11 (12) 11947–11953 (2019) Dai, G, Xie, Q, Ma, C, Zhang, G, “Biodegradable Poly(Ester-co-Acrylate) with Antifoulant Pendant Groups for Marine Anti-biofouling.” ACS Appl. Mater. Interfaces, 11 (12) 11947–11953 (2019)
155.
Zurück zum Zitat Vesco, S, Aversa, C, Puopolo, M, Barletta, M, “Advances in Design and Manufacturing of Environmentally Friendly and Biocide-Free Antifouling/Foul-Release Coatings: Replacement of Fluorinate Species.” J. Coat. Technol. Res., 16 (3) 661–680 (2019) Vesco, S, Aversa, C, Puopolo, M, Barletta, M, “Advances in Design and Manufacturing of Environmentally Friendly and Biocide-Free Antifouling/Foul-Release Coatings: Replacement of Fluorinate Species.” J. Coat. Technol. Res., 16 (3) 661–680 (2019)
156.
Zurück zum Zitat Al-Naamani, L, Dobretsov, S, Dutta, J, Burgess, JG, “Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling.” Chemosphere, 168 408–417 (2017) Al-Naamani, L, Dobretsov, S, Dutta, J, Burgess, JG, “Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling.” Chemosphere, 168 408–417 (2017)
157.
Zurück zum Zitat Verma, C, Ebenso, EE, Quraishi, MA, “Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview.” J. Mol. Liq., 233 403–414 (2017) Verma, C, Ebenso, EE, Quraishi, MA, “Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview.” J. Mol. Liq., 233 403–414 (2017)
158.
Zurück zum Zitat Haugh, H, Kim, A, Bansal, P, “No Time Like the Present: How a Present Time Perspective Can Foster Sustainable Development.” Acad. Manag. J., 62 (2) 607–634 (2019) Haugh, H, Kim, A, Bansal, P, “No Time Like the Present: How a Present Time Perspective Can Foster Sustainable Development.” Acad. Manag. J., 62 (2) 607–634 (2019)
Metadaten
Titel
Chemistry and application of emerging ecofriendly antifouling paints: a review
verfasst von
Sampson Kofi Kyei
Godfred Darko
Onyewuchi Akaranta
Publikationsdatum
21.01.2020
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2020
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-019-00294-3

Weitere Artikel der Ausgabe 2/2020

Journal of Coatings Technology and Research 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.