Skip to main content
Erschienen in: Journal of Materials Science 8/2017

28.12.2016 | Original Paper

Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization

verfasst von: Bo Wang, Weifei Li, Jianping Deng

Erschienen in: Journal of Materials Science | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study reports the first strategy for establishing chiral 3D porous hybrid foams constructed by optically active helical-substituted polyacetylene and reduced graphene oxide (RGO). Firstly, RGO-foam was prepared from graphene oxide through a reduction/self-assembly process, and then adsorbed monomer, cross-linking agent, and catalyst. After polymerization, cross-linked helical polymer chains formed inside the RGO-foam, providing chiral 3D foams. Circular dichroism spectra verified the formation of helical polymer chains with preferential helicity and considerable optical activity of the chiral 3D foams. Their porous structure was observed by SEM. TGA and BET analyses demonstrated the foams’ remarkable thermostability and high specific surface area. The chiral foams were used as additive to induce enantioselective crystallization of racemic alanine. l-Alanine was preferentially induced to form needle-like crystals. The chiral foams could be easily separated and reused. This study provides a novel type of chiral hybrid materials with significant potential applications in chiral-related areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
2.
Zurück zum Zitat Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRef Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRef
3.
Zurück zum Zitat Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279CrossRef Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279CrossRef
4.
Zurück zum Zitat Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRef Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRef
5.
Zurück zum Zitat Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRef Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRef
6.
Zurück zum Zitat Johnson DW, Dobson BP, Coleman KSA (2015) Manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20:367–382CrossRef Johnson DW, Dobson BP, Coleman KSA (2015) Manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20:367–382CrossRef
7.
Zurück zum Zitat Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The Effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The Effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef
8.
Zurück zum Zitat Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374CrossRef Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374CrossRef
9.
Zurück zum Zitat Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRef Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRef
10.
Zurück zum Zitat Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z, Tian X, Hu C, Ma M (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7:11583–11591CrossRef Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z, Tian X, Hu C, Ma M (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7:11583–11591CrossRef
11.
Zurück zum Zitat Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef
12.
Zurück zum Zitat Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12:2446–2451CrossRef Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12:2446–2451CrossRef
13.
Zurück zum Zitat Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef
14.
Zurück zum Zitat Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef
15.
Zurück zum Zitat Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef
16.
Zurück zum Zitat Jia J, Sun X, Lin X, Shen X, Mai Y-W, Kim J-K (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783CrossRef Jia J, Sun X, Lin X, Shen X, Mai Y-W, Kim J-K (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783CrossRef
17.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRef
18.
Zurück zum Zitat Samad YA, Li Y, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7:9195–9202CrossRef Samad YA, Li Y, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7:9195–9202CrossRef
19.
Zurück zum Zitat Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5:24342–24351CrossRef Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5:24342–24351CrossRef
20.
Zurück zum Zitat Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@ reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73CrossRef Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@ reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73CrossRef
21.
Zurück zum Zitat Gopalaiah K (2013) Chiral iron catalysts for asymmetric synthesis. Chem Rev 113:3248–3296CrossRef Gopalaiah K (2013) Chiral iron catalysts for asymmetric synthesis. Chem Rev 113:3248–3296CrossRef
22.
Zurück zum Zitat Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959CrossRef Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959CrossRef
23.
Zurück zum Zitat Van de Voorde B, Bueken B, Denayer J, De Vos D (2014) Adsorptive separation on metal–organic frameworks in the liquid phase. Chem Soc Rev 43:5766–5788CrossRef Van de Voorde B, Bueken B, Denayer J, De Vos D (2014) Adsorptive separation on metal–organic frameworks in the liquid phase. Chem Soc Rev 43:5766–5788CrossRef
24.
Zurück zum Zitat Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed 54:3872–3890CrossRef Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed 54:3872–3890CrossRef
25.
Zurück zum Zitat Guerra S, Iehl J, Holler M, Peterca M, Wilson DA, Partridge BE, Zhang S, Deschenaux R, Nierengarten J-F, Percec V (2015) Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core. Chem Sci 6:3393–3401CrossRef Guerra S, Iehl J, Holler M, Peterca M, Wilson DA, Partridge BE, Zhang S, Deschenaux R, Nierengarten J-F, Percec V (2015) Self-organisation of dodeca-dendronized fullerene into supramolecular discs and helical columns containing a nanowire-like core. Chem Sci 6:3393–3401CrossRef
26.
Zurück zum Zitat Kim H, Seo K-U, Jin Y-J, Lee C-L, Teraguchi M, Kaneko T, Aoki T, Kwak G (2016) Highly emissive, optically active poly (diphenylacetylene) having a bulky chiral side group. ACS Macro Lett 5:622–625CrossRef Kim H, Seo K-U, Jin Y-J, Lee C-L, Teraguchi M, Kaneko T, Aoki T, Kwak G (2016) Highly emissive, optically active poly (diphenylacetylene) having a bulky chiral side group. ACS Macro Lett 5:622–625CrossRef
27.
Zurück zum Zitat Chu G, Wang X, Yin H, Shi Y, Jiang H, Chen T, Gao J, Qu D, Xu Y, Ding D (2015) Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces 7:21797–21806CrossRef Chu G, Wang X, Yin H, Shi Y, Jiang H, Chen T, Gao J, Qu D, Xu Y, Ding D (2015) Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces 7:21797–21806CrossRef
28.
Zurück zum Zitat Huang H, Ren C, Yu C, Yang W, Deng J (2014) Cholic acid/graphene oxide chiral hybrid material: preparation and characterizations. Acta Chim Sin 72:1169–1174CrossRef Huang H, Ren C, Yu C, Yang W, Deng J (2014) Cholic acid/graphene oxide chiral hybrid material: preparation and characterizations. Acta Chim Sin 72:1169–1174CrossRef
29.
Zurück zum Zitat Gellman AJ (2010) Chiral surfaces: accomplishments and challenges. ACS Nano 4:5–10CrossRef Gellman AJ (2010) Chiral surfaces: accomplishments and challenges. ACS Nano 4:5–10CrossRef
30.
Zurück zum Zitat Helmich F, Lee CC, Schenning APHJ, Meijer EW (2010) Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. J Am Chem Soc 132:16753–16755CrossRef Helmich F, Lee CC, Schenning APHJ, Meijer EW (2010) Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. J Am Chem Soc 132:16753–16755CrossRef
31.
Zurück zum Zitat Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) The macromolecular route to chiral amplification. Angew Chem Int Ed 38:3138–3154CrossRef Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) The macromolecular route to chiral amplification. Angew Chem Int Ed 38:3138–3154CrossRef
32.
Zurück zum Zitat Budhathoki-Uprety J, Novak BM (2011) Synthesis of alkyne-functionalized helical polycarbodiimides and their ligation to small molecules using ‘click’ and sonogashira reactions. Macromolecules 44:5947–5954CrossRef Budhathoki-Uprety J, Novak BM (2011) Synthesis of alkyne-functionalized helical polycarbodiimides and their ligation to small molecules using ‘click’ and sonogashira reactions. Macromolecules 44:5947–5954CrossRef
33.
Zurück zum Zitat Freire F, Quiñoá E, Riguera R (2016) Supramolecular assemblies from poly(phenylacetylene)s. Chem Rev 116:1242–1271CrossRef Freire F, Quiñoá E, Riguera R (2016) Supramolecular assemblies from poly(phenylacetylene)s. Chem Rev 116:1242–1271CrossRef
34.
Zurück zum Zitat Huang H, Deng J, Shi Y (2016) Optically active physical gels with chiral memory ability: directly prepared by helix-sense-selective polymerization. Macromolecules 49:2948–2956CrossRef Huang H, Deng J, Shi Y (2016) Optically active physical gels with chiral memory ability: directly prepared by helix-sense-selective polymerization. Macromolecules 49:2948–2956CrossRef
35.
Zurück zum Zitat Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867CrossRef Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867CrossRef
36.
Zurück zum Zitat Yu Z-P, Ma C-H, Wang Q, Liu N, Yin J, Wu Z-Q (2016) Polyallene-block-polythiophene-block-polyallene copolymers: one-pot synthesis, helical assembly, and multiresponsiveness. Macromolecules 49:1180–1190CrossRef Yu Z-P, Ma C-H, Wang Q, Liu N, Yin J, Wu Z-Q (2016) Polyallene-block-polythiophene-block-polyallene copolymers: one-pot synthesis, helical assembly, and multiresponsiveness. Macromolecules 49:1180–1190CrossRef
37.
Zurück zum Zitat Shiotsuki M, Sanda F, Masuda T (2011) Polymerization of substituted acetylenes and features of the formed polymers. Polym Chem 2:1044–1058CrossRef Shiotsuki M, Sanda F, Masuda T (2011) Polymerization of substituted acetylenes and features of the formed polymers. Polym Chem 2:1044–1058CrossRef
38.
Zurück zum Zitat Zhang C, Wang H, Geng Q, Yang T, Liu L, Sakai R, Satoh T, Kakuchi T, Okamoto Y (2013) Synthesis of helical poly (phenylacetylene)s with amide linkage bearing l-phenylalanine and l-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC. Macromolecules 46:8406–8415CrossRef Zhang C, Wang H, Geng Q, Yang T, Liu L, Sakai R, Satoh T, Kakuchi T, Okamoto Y (2013) Synthesis of helical poly (phenylacetylene)s with amide linkage bearing l-phenylalanine and l-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC. Macromolecules 46:8406–8415CrossRef
39.
Zurück zum Zitat Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109:6102–6211CrossRef Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109:6102–6211CrossRef
40.
Zurück zum Zitat ter Huurne GM, Gillissen MAJ, Palmans ARA, Voets IK, Meijer EW (2015) The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structure. Macromolecules 48:3949–3956CrossRef ter Huurne GM, Gillissen MAJ, Palmans ARA, Voets IK, Meijer EW (2015) The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structure. Macromolecules 48:3949–3956CrossRef
41.
Zurück zum Zitat Zhang H, Yang W, Deng J (2015) Fabrication of optically active microparticles constructed by helical polymer/quinine and their application to asymmetric michael addition. Polymer 80:115–122CrossRef Zhang H, Yang W, Deng J (2015) Fabrication of optically active microparticles constructed by helical polymer/quinine and their application to asymmetric michael addition. Polymer 80:115–122CrossRef
42.
Zurück zum Zitat Ke Y-Z, Nagata Y, Yamada T, Suginome M (2015) Majority-rules-type helical poly(quinoxaline-2,3-diyl)s as highly efficient chirality-amplification systems for asymmetric catalysis. Angew Chem Int Ed 54:9333–9337CrossRef Ke Y-Z, Nagata Y, Yamada T, Suginome M (2015) Majority-rules-type helical poly(quinoxaline-2,3-diyl)s as highly efficient chirality-amplification systems for asymmetric catalysis. Angew Chem Int Ed 54:9333–9337CrossRef
43.
Zurück zum Zitat Anger E, Iida H, Yamaguchi T, Hayashi K, Kumano D, Crassous J, Vanthuyne N, Roussel C, Yashima E (2014) Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. Polym Chem 5:4909–4914CrossRef Anger E, Iida H, Yamaguchi T, Hayashi K, Kumano D, Crassous J, Vanthuyne N, Roussel C, Yashima E (2014) Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. Polym Chem 5:4909–4914CrossRef
44.
Zurück zum Zitat Liang J, Song C, Deng J (2014) Optically active microspheres constructed by helical substituted polyacetylene and used for adsorption of organic compounds in aqueous systems. ACS Appl Mater Interfaces 6:19041–19049CrossRef Liang J, Song C, Deng J (2014) Optically active microspheres constructed by helical substituted polyacetylene and used for adsorption of organic compounds in aqueous systems. ACS Appl Mater Interfaces 6:19041–19049CrossRef
45.
Zurück zum Zitat Liang J, Wu Y, Deng J (2016) Construction of molecularly imprinted polymer microspheres by using helical substituted polyacetylene and application in enantio-differentiating release and adsorption. ACS Appl Mater Interfaces 8:12494–12503CrossRef Liang J, Wu Y, Deng J (2016) Construction of molecularly imprinted polymer microspheres by using helical substituted polyacetylene and application in enantio-differentiating release and adsorption. ACS Appl Mater Interfaces 8:12494–12503CrossRef
46.
Zurück zum Zitat Chen C, Zhao B, Deng J (2015) Optically active porous microspheres consisting of helical substituted polyacetylene prepared by precipitation polymerization without porogen and the application in enantioselective crystallization. ACS Macro Lett 4:348–352CrossRef Chen C, Zhao B, Deng J (2015) Optically active porous microspheres consisting of helical substituted polyacetylene prepared by precipitation polymerization without porogen and the application in enantioselective crystallization. ACS Macro Lett 4:348–352CrossRef
47.
Zurück zum Zitat Preiss LC, Werber L, Fischer V, Hanif S, Landfester K, Mastai Y, Muñoz-Espí R (2015) Amino-acid-based chiral nanoparticles for enantioselective crystallization. Adv Mater 27:2728–2732CrossRef Preiss LC, Werber L, Fischer V, Hanif S, Landfester K, Mastai Y, Muñoz-Espí R (2015) Amino-acid-based chiral nanoparticles for enantioselective crystallization. Adv Mater 27:2728–2732CrossRef
48.
Zurück zum Zitat Li W, Liu X, Qian G, Deng J (2014) Immobilization of optically active helical polyacetylene-derived nanoparticles on graphene oxide by chemical bonds and their use in enantioselective crystallization. Chem Mater 26:1948–1956CrossRef Li W, Liu X, Qian G, Deng J (2014) Immobilization of optically active helical polyacetylene-derived nanoparticles on graphene oxide by chemical bonds and their use in enantioselective crystallization. Chem Mater 26:1948–1956CrossRef
49.
Zurück zum Zitat Ren C, Chen Y, Zhang H, Deng J (2013) Noncovalent chiral functionalization of graphene with optically active helical polymers. Macromol Rapid Commun 34:1368–1374CrossRef Ren C, Chen Y, Zhang H, Deng J (2013) Noncovalent chiral functionalization of graphene with optically active helical polymers. Macromol Rapid Commun 34:1368–1374CrossRef
50.
Zurück zum Zitat Hummers WSJ, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WSJ, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
51.
Zurück zum Zitat Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRef Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRef
52.
Zurück zum Zitat Saito K, Nakamura J, Natori A (2007) Ballistic thermal conductance of a graphene sheet. Phys Rev B 76:115409CrossRef Saito K, Nakamura J, Natori A (2007) Ballistic thermal conductance of a graphene sheet. Phys Rev B 76:115409CrossRef
53.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
54.
Zurück zum Zitat Liu D, Chen H, Deng J, Yang W (2013) Optically active, magnetic gels consisting of helical substituted polyacetylene and Fe3O4 nanoparticles: preparation and chiral recognition ability. J Mater Chem C 1:8066–8074CrossRef Liu D, Chen H, Deng J, Yang W (2013) Optically active, magnetic gels consisting of helical substituted polyacetylene and Fe3O4 nanoparticles: preparation and chiral recognition ability. J Mater Chem C 1:8066–8074CrossRef
55.
Zurück zum Zitat Song C, Zhang C, Wang F, Yang W, Deng J (2013) Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polym Chem 4:645–652CrossRef Song C, Zhang C, Wang F, Yang W, Deng J (2013) Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polym Chem 4:645–652CrossRef
56.
Zurück zum Zitat Liang J, Wu Y, Deng X, Deng J (2015) Optically active porous materials constructed by chirally helical substituted polyacetylene through a high internal phase emulsion approach and the application in enantioselective crystallization. ACS Macro Lett 4:1179–1183CrossRef Liang J, Wu Y, Deng X, Deng J (2015) Optically active porous materials constructed by chirally helical substituted polyacetylene through a high internal phase emulsion approach and the application in enantioselective crystallization. ACS Macro Lett 4:1179–1183CrossRef
Metadaten
Titel
Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization
verfasst von
Bo Wang
Weifei Li
Jianping Deng
Publikationsdatum
28.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0702-1

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.