Skip to main content

2025 | OriginalPaper | Buchkapitel

CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment

verfasst von : Mohammad Zavid Parvez, Rafiqul Islam, Md Zahidul Islam

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a hyperconnected environment, medical institutions are particularly concerned with data privacy when sharing and transmitting sensitive patient information due to the risk of data breaches, where malicious actors could intercept sensitive information. A collaborative learning framework, including transfer, federated, and incremental learning, can generate efficient, secure, and scalable models while requiring less computation, maintaining patient data privacy, and ensuring an up-to-date model. This study aims to address the detection of COVID-19 using chest X-ray images through a proposed collaborative learning framework called CL3. Initially, transfer learning is employed, leveraging knowledge from a pre-trained model as the starting global model. Local models from different medical institutes are then integrated, and a new global model is constructed to adapt to any data drift observed in the local models. Additionally, incremental learning is considered, allowing continuous adaptation to new medical data without forgetting previously learned information. Experimental results demonstrate that the CL3 framework achieved a global accuracy of 89.99% when using Xception with a batch size of 16 after being trained for six federated communication rounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanchez-Iborra, R., Skarmeta, A.: Securing the hyperconnected healthcare ecosystem. In: AI and IoT for Sustainable Development in Emerging Countries: Challenges and Opportunities, pp. 455–471. Cham: Springer International Publishing (2022) Sanchez-Iborra, R., Skarmeta, A.: Securing the hyperconnected healthcare ecosystem. In: AI and IoT for Sustainable Development in Emerging Countries: Challenges and Opportunities, pp. 455–471. Cham: Springer International Publishing (2022)
2.
Zurück zum Zitat López Martínez, A., Gil Pérez, M., Ruiz-Martínez, A.: A comprehensive review of the state-of-the-art on security and privacy issues in healthcare. ACM Comput. Surv. 55(12), 1–38 (2023)CrossRef López Martínez, A., Gil Pérez, M., Ruiz-Martínez, A.: A comprehensive review of the state-of-the-art on security and privacy issues in healthcare. ACM Comput. Surv. 55(12), 1–38 (2023)CrossRef
3.
Zurück zum Zitat Mitchell, S.: Australia’s healthcare sector faces escalating cyber threat. SecurityBrief Australia - Technology news for CISOs & cybersecurity decision-makers. urlhttps://securitybrief.com.au/story/australia-s-healthcare-sector-facesescalating-cyber-threat. Accessed 27 July 2024 Mitchell, S.: Australia’s healthcare sector faces escalating cyber threat. SecurityBrief Australia - Technology news for CISOs & cybersecurity decision-makers. urlhttps://​securitybrief.​com.​au/​story/​australia-s-healthcare-sector-facesescalating-cyber-threat.​ Accessed 27 July 2024
4.
Zurück zum Zitat Hoeyer, K., Green, S., Martani, A., Middleton, A., Pinel, C.: Health in data space: formative and experiential dimensions of cross-border health data sharing. Big Data Soc. 11(1), 20539517231224256 (2024)CrossRef Hoeyer, K., Green, S., Martani, A., Middleton, A., Pinel, C.: Health in data space: formative and experiential dimensions of cross-border health data sharing. Big Data Soc. 11(1), 20539517231224256 (2024)CrossRef
5.
Zurück zum Zitat Menghani, G.: Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 55(12), 1–37 (2023)CrossRef Menghani, G.: Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 55(12), 1–37 (2023)CrossRef
6.
Zurück zum Zitat Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: a deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons & Fractals 142, 110495 (2021)MathSciNetCrossRef Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: a deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons & Fractals 142, 110495 (2021)MathSciNetCrossRef
7.
Zurück zum Zitat Gupta, S., Shabaz, M., Vyas, S.: Artificial intelligence and IoT based prediction of COVID-19 using chest X-ray images. Smart Health 25, 100299 (2022)CrossRef Gupta, S., Shabaz, M., Vyas, S.: Artificial intelligence and IoT based prediction of COVID-19 using chest X-ray images. Smart Health 25, 100299 (2022)CrossRef
8.
Zurück zum Zitat Hussein, H.I., Mohammed, A.O., Hassan, M.M., Mstafa, R.J.: Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images. Expert Syst. Appl. 223, 119900 (2023)CrossRef Hussein, H.I., Mohammed, A.O., Hassan, M.M., Mstafa, R.J.: Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images. Expert Syst. Appl. 223, 119900 (2023)CrossRef
9.
Zurück zum Zitat Dasha, P., Parhi, S.S.: Federated model learning for COVID-19 screening from chest X-ray images. Appl. Soft Comput. 109, 107333 (2023) Dasha, P., Parhi, S.S.: Federated model learning for COVID-19 screening from chest X-ray images. Appl. Soft Comput. 109, 107333 (2023)
10.
Zurück zum Zitat Chowdhury, D., et al.: Federated learning based COVID-19 detection. Expert. Syst. 40(5), e13173 (2023)CrossRef Chowdhury, D., et al.: Federated learning based COVID-19 detection. Expert. Syst. 40(5), e13173 (2023)CrossRef
11.
Zurück zum Zitat Kandati, D.R., Gadekallu, T.R.: Federated learning approach for early detection of chest lesion caused by COVID-19 infection using particle swarm optimization. Electronics 12(3), 710 (2023)CrossRef Kandati, D.R., Gadekallu, T.R.: Federated learning approach for early detection of chest lesion caused by COVID-19 infection using particle swarm optimization. Electronics 12(3), 710 (2023)CrossRef
12.
Zurück zum Zitat Malik, H., Anees, T., Naeem, A., Naqvi, R.A., Loh, W.K.: Blockchain-federated and deep-learning-based ensembling of capsule network with incremental extreme learning machines for classification of COVID-19 using CT scans. Bioengineering 10(2), 203 (2023)CrossRef Malik, H., Anees, T., Naeem, A., Naqvi, R.A., Loh, W.K.: Blockchain-federated and deep-learning-based ensembling of capsule network with incremental extreme learning machines for classification of COVID-19 using CT scans. Bioengineering 10(2), 203 (2023)CrossRef
13.
Zurück zum Zitat Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021) Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses. arXiv preprint arXiv:​2104.​10972 (2021)
14.
Zurück zum Zitat Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)CrossRef Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)CrossRef
15.
Zurück zum Zitat Gupta, A., Gupta, S., Katarya, R.: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl. Soft Comput. 99, 106859 (2021)CrossRef Gupta, A., Gupta, S., Katarya, R.: InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl. Soft Comput. 99, 106859 (2021)CrossRef
16.
Zurück zum Zitat Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1-2), 1–210 (2021) Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1-2), 1–210 (2021)
17.
Zurück zum Zitat Tovino, S.A.: The HIPAA privacy rule and the EU GDPR: illustrative comparisons. Seton Hall L. Rev. 47, 973 (2016) Tovino, S.A.: The HIPAA privacy rule and the EU GDPR: illustrative comparisons. Seton Hall L. Rev. 47, 973 (2016)
18.
Zurück zum Zitat Islam, M., Reza, M.T., Kaosar, M., Parvez, M.Z.: Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images. Neural Process. Lett. 55(4), 3779–3809 (2023)CrossRef Islam, M., Reza, M.T., Kaosar, M., Parvez, M.Z.: Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images. Neural Process. Lett. 55(4), 3779–3809 (2023)CrossRef
19.
Zurück zum Zitat Li, Z., Huang, W., Xiong, Y., Ren, S., Zhu, T.: Incremental learning imbalanced data streams with concept drift: the dynamic updated ensemble algorithm. Knowl.-Based Syst. 195, 105694 (2020)CrossRef Li, Z., Huang, W., Xiong, Y., Ren, S., Zhu, T.: Incremental learning imbalanced data streams with concept drift: the dynamic updated ensemble algorithm. Knowl.-Based Syst. 195, 105694 (2020)CrossRef
20.
Zurück zum Zitat Rahman, M.J., et al.: CoroPy: a deep learning based comparison between X-Ray and CT Scan images in COVID-19 detection and classification. In: Bioengineering and Biomedical Signal and Image Processing: First International Conference, BIOMESIP 2021, Meloneras, Gran Canaria, Spain, July 19-21, 2021, Proceedings 1, pp. 392–404. Springer International Publishing (2021) Rahman, M.J., et al.: CoroPy: a deep learning based comparison between X-Ray and CT Scan images in COVID-19 detection and classification. In: Bioengineering and Biomedical Signal and Image Processing: First International Conference, BIOMESIP 2021, Meloneras, Gran Canaria, Spain, July 19-21, 2021, Proceedings 1, pp. 392–404. Springer International Publishing (2021)
Metadaten
Titel
CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment
verfasst von
Mohammad Zavid Parvez
Rafiqul Islam
Md Zahidul Islam
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_7