Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2015 | Regular Paper | Ausgabe 1/2015

Knowledge and Information Systems 1/2015

Class imbalance revisited: a new experimental setup to assess the performance of treatment methods

Zeitschrift:
Knowledge and Information Systems > Ausgabe 1/2015
Autoren:
Ronaldo C. Prati, Gustavo E. A. P. A. Batista, Diego F. Silva

Abstract

In the last decade, class imbalance has attracted a huge amount of attention from researchers and practitioners. Class imbalance is ubiquitous in Machine Learning, Data Mining and Pattern Recognition applications; therefore, these research communities have responded to such interest with literally dozens of methods and techniques. Surprisingly, there are still many fundamental open-ended questions such as “Are all learning paradigms equally affected by class imbalance?”, “What is the expected performance loss for different imbalance degrees?” and “How much of the performance losses can be recovered by the treatment methods?”. In this paper, we propose a simple experimental design to assess the performance of class imbalance treatment methods. This experimental setup uses real data set with artificially modified class distributions to evaluate classifiers in a wide range of class imbalance. We apply such experimental design in a large-scale experimental evaluation with 22 data set and seven learning algorithms from different paradigms. We also propose a statistical procedure aimed to evaluate the relative degradation and recoveries, based on confidence intervals. This procedure allows a simple yet insightful visualization of the results, as well as provide the basis for drawing statistical conclusions. Our results indicate that the expected performance loss, as a percentage of the performance obtained with the balanced distribution, is quite modest (below 5 %) for the most balanced distributions up to 10 % of minority examples. However, the loss tends to increase quickly for higher degrees of class imbalance, reaching 20 % for 1 % of minority class examples. Support Vector Machine is the classifier paradigm that is less affected by class imbalance, being almost insensitive to all but the most imbalanced distributions. Finally, we show that the treatment methods only partially recover the performance losses. On average, typically, about 30 % or less of the performance that was lost due to class imbalance was recovered by these methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Knowledge and Information Systems 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise