Zum Inhalt
Erschienen in:

10.07.2018

Classification of asymptomatic and osteoarthritic knee gait patterns using gait analysis via deterministic learning

verfasst von: Wei Zeng, Limin Ma, Chengzhi Yuan, Fenglin Liu, Qinghui Wang, Ying Wang, Yu Zhang

Erschienen in: Artificial Intelligence Review | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gait measures have received increasing attention in the evaluation of patients with knee osteoarthritis (OA). Comprehending gait parameters is an essential requirement for studying the causes of knee disorders. The aim of this work is to develop a new method to distinguish between asymptomatic (AS) and osteoarthritic knee gait patterns using gait analysis via deterministic learning. Spatiotemporal parameters and three-dimensional knee joint rotations and translations are measured and compared in 19 patients with knee OA and 28 AS control subjects during level walking. The classification approach consists of two stages: a training stage and a classification stage. In the training stage, gait features representing gait dynamics, including knee rotations and translations, are derived from the kinematic data of the knees in six-degree-of-freedom. Gait dynamics underlying gait patterns of AS control subjects and patients with knee OA are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of AS control subjects and patients with knee OA constitute a training set. In the classification stage, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test knee OA gait pattern to be classified, a set of classification errors are generated. The average \(L_1\) norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test knee OA gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of AS control subjects and patients with knee OA. By using the two-fold cross-validation and leave-one-out cross-validation styles, the correct classification rates for knee OA gait patterns are reported to be 95.7 and 97.9%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Classification of asymptomatic and osteoarthritic knee gait patterns using gait analysis via deterministic learning
verfasst von
Wei Zeng
Limin Ma
Chengzhi Yuan
Fenglin Liu
Qinghui Wang
Ying Wang
Yu Zhang
Publikationsdatum
10.07.2018
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence Review / Ausgabe 1/2019
Print ISSN: 0269-2821
Elektronische ISSN: 1573-7462
DOI
https://doi.org/10.1007/s10462-018-9645-z