Skip to main content
Erschienen in: Health and Technology 6/2021

17.09.2021 | Original Paper

Classification of breast cancer types, sub-types and grade from histopathological images using deep learning technique

verfasst von: Elbetel Taye Zewdie, Abel Worku Tessema, Gizeaddis Lamesgin Simegn

Erschienen in: Health and Technology | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Breast cancer is an invasive tumor that develops in the breast tissue. It is the most common cancer and also the leading cause of cancer mortality among women worldwide. Survival from breast cancer can be increased through advances in screening methods and early diagnosis. Clinical examination, screening using imaging modalities and pathological assessment (biopsy test) are common methods of breast cancer diagnosis. Among these, pathological assessment is a gold standard due to its potential in identifying the cancer type, sub-type and stage. However, current diagnosis using this pathological assessment technique is commonly done through visual inspection microscopic images. This procedure is time consuming, tedious and subjective which may lead to misdiagnosis. In this paper, a multi-class classification system for breast cancer type, sub-type and grade is proposed based on deep learning technique. The system was trained and validated using histopathological images acquired from Jimma University Medical Center (JUMC) using digital camera (Optikam PRO5) mounted on Optika microscope by four levels of magnification (40x, 100x, 200x, 400x), and also from ‘BreakHis’ and ‘zendo’ online datasets. All images were pre-processed and enhanced prior to feeding to the ResNet 50 pre-trained model. The developed system is capable of classifying breast cancer into binary classes (benign and malignant) and multi-classes (sub-types). Identification of cancer grade was done for cancers that are classified as invasive ductal carcinomas. Test results showed that, the proposed method is 96.75%, 96.7%, 95.78%, and 93.86% accurate for binary classification, benign sub-type classification, malignant sub-type classification, and grade identification, respectively. The proposed method can be used as a decision support system for physicians especially in developing countries where both the means and the expertise are in scarce. Early and accurate detection of cancer type increases the chance of successful treatment resulting a reduction in breast cancer mortality rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li N, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the Global Burden of Disease Study 2017. J Hematol Oncol. 2019;12(1):140.CrossRef Li N, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the Global Burden of Disease Study 2017. J Hematol Oncol. 2019;12(1):140.CrossRef
2.
Zurück zum Zitat Fitzmaurice C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4(11):1553–68.MathSciNetCrossRef Fitzmaurice C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4(11):1553–68.MathSciNetCrossRef
3.
Zurück zum Zitat Tsuda H, et al. Histological classification of breast tumors in the general rules for clinical and pathological recording of breast cancer (18th edition). Breast Cancer. 2020;27(3):309–21.CrossRef Tsuda H, et al. Histological classification of breast tumors in the general rules for clinical and pathological recording of breast cancer (18th edition). Breast Cancer. 2020;27(3):309–21.CrossRef
4.
Zurück zum Zitat Zhang YJ, et al. Status quo and development trend of breast biopsy technology. Gland Surg. 2013;2(1):15–24. Zhang YJ, et al. Status quo and development trend of breast biopsy technology. Gland Surg. 2013;2(1):15–24.
5.
Zurück zum Zitat Rubin R, Strayer DS, Rubin E. Rubin’s pathology: clinicopathologic foundations of medicine. Lippincott Williams & Wilkins; 2008. Rubin R, Strayer DS, Rubin E. Rubin’s pathology: clinicopathologic foundations of medicine. Lippincott Williams & Wilkins; 2008.
6.
Zurück zum Zitat Gurcan MN, et al. Histopathological image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147–71.CrossRef Gurcan MN, et al. Histopathological image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147–71.CrossRef
7.
Zurück zum Zitat Kuppusamy K, et al. Cytological grading of breast tumors-the human and canine perspective. Frontiers in veterinary science. 2019;6:283–283.CrossRef Kuppusamy K, et al. Cytological grading of breast tumors-the human and canine perspective. Frontiers in veterinary science. 2019;6:283–283.CrossRef
8.
Zurück zum Zitat Tavasoly A, et al. Classification and grading of canine malignant mammary tumors. Veterinary Research Forum : An International Quarterly Journal. 2013;4(1):25–30. Tavasoly A, et al. Classification and grading of canine malignant mammary tumors. Veterinary Research Forum : An International Quarterly Journal. 2013;4(1):25–30.
9.
Zurück zum Zitat Elston CW, Ellis I. Systemic pathology. Churchill Livingstone; 1998. Elston CW, Ellis I. Systemic pathology. Churchill Livingstone; 1998.
10.
Zurück zum Zitat Hadjiiski L, Sahiner B, Chan HP. Advances in computer-aided diagnosis for breast cancer. Curr Opin Obstet Gynecol. 2006;18(1):64–70.CrossRef Hadjiiski L, Sahiner B, Chan HP. Advances in computer-aided diagnosis for breast cancer. Curr Opin Obstet Gynecol. 2006;18(1):64–70.CrossRef
11.
Zurück zum Zitat Jalalian A, et al. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI J. 2017;16:113–37. Jalalian A, et al. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI J. 2017;16:113–37.
12.
Zurück zum Zitat Kaushal C, et al. Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images. IRBM. 2019;40(4):211–27.CrossRef Kaushal C, et al. Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images. IRBM. 2019;40(4):211–27.CrossRef
14.
Zurück zum Zitat Guo Y, et al. Breast cancer histology image classification based on deep neural networks. In International Conference Image Analysis and Recognition. Springer; 2018. Guo Y, et al. Breast cancer histology image classification based on deep neural networks. In International Conference Image Analysis and Recognition. Springer; 2018.
15.
Zurück zum Zitat Nahid A-A, Mehrabi MA, Kong Y. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int. 2018;2018:2362108.CrossRef Nahid A-A, Mehrabi MA, Kong Y. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int. 2018;2018:2362108.CrossRef
16.
Zurück zum Zitat Nguyen CP, Vo AH, Nguyen BT. Breast cancer histology image classification using deep learning. In 2019 19th international symposium on communications and information technologies (ISCIT). 2019. Nguyen CP, Vo AH, Nguyen BT. Breast cancer histology image classification using deep learning. In 2019 19th international symposium on communications and information technologies (ISCIT). 2019.
17.
Zurück zum Zitat Zhu C, et al. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Med Inform Decis Mak. 2019;19(1):198.CrossRef Zhu C, et al. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Med Inform Decis Mak. 2019;19(1):198.CrossRef
18.
Zurück zum Zitat Rakhlin A, et al. Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis. In Image Analysis and Recognition. Cham: Springer International Publishing; 2018. Rakhlin A, et al. Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis. In Image Analysis and Recognition. Cham: Springer International Publishing; 2018.
19.
Zurück zum Zitat Araújo T, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS ONE. 2017;12(6):e0177544.CrossRef Araújo T, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS ONE. 2017;12(6):e0177544.CrossRef
20.
Zurück zum Zitat Golatkar A, Anand D, Sethi A. Classification of breast cancer histology using deep learning. In International Conference Image Analysis and Recognition. Springer; 2018. Golatkar A, Anand D, Sethi A. Classification of breast cancer histology using deep learning. In International Conference Image Analysis and Recognition. Springer; 2018.
21.
Zurück zum Zitat Dai X, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43. Dai X, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.
22.
Zurück zum Zitat Jiang Y, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLoS ONE. 2019;14(3):e0214587–e0214587.CrossRef Jiang Y, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLoS ONE. 2019;14(3):e0214587–e0214587.CrossRef
23.
Zurück zum Zitat Jaber MI, et al. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast Cancer Res. 2020;22(1):12.MathSciNetCrossRef Jaber MI, et al. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast Cancer Res. 2020;22(1):12.MathSciNetCrossRef
24.
Zurück zum Zitat Jannesari M, et al. Breast Cancer Histopathological Image Classification: A Deep Learning Approach. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018. Jannesari M, et al. Breast Cancer Histopathological Image Classification: A Deep Learning Approach. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018.
25.
Zurück zum Zitat Alom MZ, et al. Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J Digit Imaging. 2019;32(4):605–17.CrossRef Alom MZ, et al. Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J Digit Imaging. 2019;32(4):605–17.CrossRef
26.
Zurück zum Zitat Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5.CrossRef Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5.CrossRef
27.
Zurück zum Zitat Jeruss JS, et al. Staging of breast cancer in the neoadjuvant setting. Can Res. 2008;68(16):6477–81.CrossRef Jeruss JS, et al. Staging of breast cancer in the neoadjuvant setting. Can Res. 2008;68(16):6477–81.CrossRef
28.
Zurück zum Zitat Wöckel A, et al. The screening, diagnosis, treatment, and follow-up of breast cancer. Deutsches Arzteblatt International. 2018;115(18):316–23. Wöckel A, et al. The screening, diagnosis, treatment, and follow-up of breast cancer. Deutsches Arzteblatt International. 2018;115(18):316–23.
29.
Zurück zum Zitat Cruz-Roa A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep. 2017;7:46450.CrossRef Cruz-Roa A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep. 2017;7:46450.CrossRef
30.
Zurück zum Zitat Rulaningtyas R, Hyperastuty AS, Rahaju AS. Histopathology grading identification of breast cancer based on texture classification using GLCM and neural network method. J Phys: Conf Ser. 2018;1120:012050. Rulaningtyas R, Hyperastuty AS, Rahaju AS. Histopathology grading identification of breast cancer based on texture classification using GLCM and neural network method. J Phys: Conf Ser. 2018;1120:012050.
31.
Zurück zum Zitat Couture HD, et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ breast cancer. 2018;4(1):1–8.MathSciNetCrossRef Couture HD, et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ breast cancer. 2018;4(1):1–8.MathSciNetCrossRef
32.
Zurück zum Zitat Wahab N, Khan A, Lee YS. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput Biol Med. 2017;85:86–97.CrossRef Wahab N, Khan A, Lee YS. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput Biol Med. 2017;85:86–97.CrossRef
33.
Zurück zum Zitat Li L, et al. Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images. Multimedia Tools and Applications. 2020;79(21):14509–28.CrossRef Li L, et al. Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images. Multimedia Tools and Applications. 2020;79(21):14509–28.CrossRef
34.
Zurück zum Zitat Wan T, et al. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing. 2017;229:34–44.CrossRef Wan T, et al. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing. 2017;229:34–44.CrossRef
35.
Zurück zum Zitat Spanhol FA, et al. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng. 2015;63(7):1455–62.CrossRef Spanhol FA, et al. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng. 2015;63(7):1455–62.CrossRef
36.
Zurück zum Zitat Dimitropoulos K, et al. Grading of invasive breast carcinoma through Grassmannian VLAD encoding. PLoS ONE. 2017;12(9):e0185110.CrossRef Dimitropoulos K, et al. Grading of invasive breast carcinoma through Grassmannian VLAD encoding. PLoS ONE. 2017;12(9):e0185110.CrossRef
37.
Zurück zum Zitat Kang B. daptive height-modified histogram equalization and chroma correction in YCbCr color space for fast backlight image compensation. Image Vis Comput. 2011;29(8):557–68.CrossRef Kang B. daptive height-modified histogram equalization and chroma correction in YCbCr color space for fast backlight image compensation. Image Vis Comput. 2011;29(8):557–68.CrossRef
38.
Zurück zum Zitat Szegedy C, et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. Szegedy C, et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
39.
Zurück zum Zitat Xie S, et al. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Xie S, et al. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
40.
Zurück zum Zitat He K, et al. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. He K, et al. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
41.
Zurück zum Zitat Szegedy C, et al. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv. 2016;1602:07261. Szegedy C, et al. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv. 2016;1602:07261.
42.
Zurück zum Zitat Xiao T, et al. Comparison of transferred deep neural networks in ultrasonic breast masses discrimination. Biomed Res Int. 2018;2018:4605191. Xiao T, et al. Comparison of transferred deep neural networks in ultrasonic breast masses discrimination. Biomed Res Int. 2018;2018:4605191.
43.
Zurück zum Zitat Motlagh MH, et al. breast cancer histopathological image classification: a deep learning approach. bioRxiv. 2018;35:1313. Motlagh MH, et al. breast cancer histopathological image classification: a deep learning approach. bioRxiv. 2018;35:1313.
44.
Zurück zum Zitat He K, et al. Identity mappings in deep residual networks. In European conference on computer vision Springer International Publishing Cham; 2016. He K, et al. Identity mappings in deep residual networks. In European conference on computer vision Springer International Publishing Cham; 2016.
45.
Zurück zum Zitat De Rezende ER, et al. Exposing computer generated images by using deep convolutional neural networks. Signal Processing: Image Communication. 2018;66:113–26. De Rezende ER, et al. Exposing computer generated images by using deep convolutional neural networks. Signal Processing: Image Communication. 2018;66:113–26.
46.
Zurück zum Zitat Goodfellow I, et al. Deep learning. Vol. 1. 2016: MIT press Cambridge. Goodfellow I, et al. Deep learning. Vol. 1. 2016: MIT press Cambridge.
47.
Zurück zum Zitat Kingma DP, Ba J. A method for stochastic optimization. SarXiv. 2014;1412:6980. Kingma DP, Ba J. A method for stochastic optimization. SarXiv. 2014;1412:6980.
48.
Zurück zum Zitat Hinton GE. Rectified linear units improve restricted boltzmann machines vinod nair. 2010. Hinton GE. Rectified linear units improve restricted boltzmann machines vinod nair. 2010.
49.
Zurück zum Zitat Feng Y, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases. 2018;5(2):77–106.CrossRef Feng Y, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases. 2018;5(2):77–106.CrossRef
50.
Zurück zum Zitat Polyak K. Breast cancer: origins and evolution. J Clin Investig. 2007;117(11):3155–63.CrossRef Polyak K. Breast cancer: origins and evolution. J Clin Investig. 2007;117(11):3155–63.CrossRef
51.
Zurück zum Zitat Veronesi U, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32.CrossRef Veronesi U, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32.CrossRef
52.
Zurück zum Zitat Hulka BS. Epidemiology of susceptibility to breast cancer. Prog Clin Biol Res. 1996;395:159–74. Hulka BS. Epidemiology of susceptibility to breast cancer. Prog Clin Biol Res. 1996;395:159–74.
53.
Zurück zum Zitat Elmore JG, et al. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study. BMJ. 2016;353:i3069.CrossRef Elmore JG, et al. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study. BMJ. 2016;353:i3069.CrossRef
54.
Zurück zum Zitat Han Z, et al. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep. 2017;7(1):4172.CrossRef Han Z, et al. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep. 2017;7(1):4172.CrossRef
Metadaten
Titel
Classification of breast cancer types, sub-types and grade from histopathological images using deep learning technique
verfasst von
Elbetel Taye Zewdie
Abel Worku Tessema
Gizeaddis Lamesgin Simegn
Publikationsdatum
17.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Health and Technology / Ausgabe 6/2021
Print ISSN: 2190-7188
Elektronische ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-021-00592-0

Weitere Artikel der Ausgabe 6/2021

Health and Technology 6/2021 Zur Ausgabe