Classification of Chronic Kidney Disease with Genetic Search Intersection Based Feature Selection Technique | springerprofessional.de Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Classification of Chronic Kidney Disease with Genetic Search Intersection Based Feature Selection Technique

share
TEILEN

Abstract

The objective of this study had reduced the identification time and to get best diagnosis model in Chronic Kidney Disease (CKD). The target was development of the strong and computationally proficient model for classification of CKD. This work had used four classification models like Naive Bayes, Multilayer Perceptron, OneR, Classification and Regression Tree (CART) to classify the CKD data set and compared the classification accuracy with all classifier. Similarly Feature Selection Technique (FST), ranking based namely Chi Squared AttributeEval (CSAE), One-R AttributeEval (ORAE) and Search based namely Genetic Search-J48 (GS-J48), Genetic Search-CART (GS-CART) have used. The contribution of this research work is to recognize and classify the CKD problem and propose a new FST namely Genetic Search Intersection Based Feature Selection Technique (GS-IBFST). The classifier offers higher accuracy with GS-IBFST compare to without FSTs and existing FSTs.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat Subasi, A., Alickovic, E., Kevric, J.: Diagnosis of chronic kidney disease by using random forest. In: 2017 Proceedings of the International Conference on Medical and Biological Engineering, pp. 589–594 (2017) Subasi, A., Alickovic, E., Kevric, J.: Diagnosis of chronic kidney disease by using random forest. In: 2017 Proceedings of the International Conference on Medical and Biological Engineering, pp. 589–594 (2017)
2.
Zurück zum Zitat Polat, H., Danaei Mehr, H., Cetin, A.: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. J. Med. Syst. 41(4), 55 (2017) CrossRef Polat, H., Danaei Mehr, H., Cetin, A.: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. J. Med. Syst. 41(4), 55 (2017) CrossRef
3.
Zurück zum Zitat Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2012) MATH Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2012) MATH
4.
Zurück zum Zitat Pujari, A.: Data Mining Techniques. University Press, Hyderabad (2013) Pujari, A.: Data Mining Techniques. University Press, Hyderabad (2013)
5.
Zurück zum Zitat Jantawan, B., Tsai, C.: A comparison of filter and wrapper approaches with data mining techniques for. Int. J. Innov. Res. Comput. Commun. Eng. 2, 4501–4508 (2014) Jantawan, B., Tsai, C.: A comparison of filter and wrapper approaches with data mining techniques for. Int. J. Innov. Res. Comput. Commun. Eng. 2, 4501–4508 (2014)
6.
Zurück zum Zitat Yildirim, P.: Filter based feature selection methods for prediction of risks in hepatitis disease. Int. J. Mach. Learn. Comput. 5, 258–263 (2015) CrossRef Yildirim, P.: Filter based feature selection methods for prediction of risks in hepatitis disease. Int. J. Mach. Learn. Comput. 5, 258–263 (2015) CrossRef
7.
Zurück zum Zitat Hall, M.: Correlation-based feature selection for machine learning. Methodology 21i195-i20, pp. 1–5 (1999) Hall, M.: Correlation-based feature selection for machine learning. Methodology 21i195-i20, pp. 1–5 (1999)
8.
Zurück zum Zitat Liu, H., Setiono, R., Science, C., Ridge, K.: Chi2: Feature Selection, pp. 388–391 (1995) Liu, H., Setiono, R., Science, C., Ridge, K.: Chi2: Feature Selection, pp. 388–391 (1995)
9.
Zurück zum Zitat Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–91 (1993) CrossRef Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–91 (1993) CrossRef
10.
Zurück zum Zitat Shrivas, A.K., Sahu, S.K., Hota, H.S.: Classification of chronic kidney disease with proposed union based feature selection technique, pp. 503–507 (2018) Shrivas, A.K., Sahu, S.K., Hota, H.S.: Classification of chronic kidney disease with proposed union based feature selection technique, pp. 503–507 (2018)
13.
Zurück zum Zitat Boukenze, B., Haqiq, A., Mousannif, H.: Predicting chronic kidney failure disease using data mining techniques, vol. 397 (2017) Boukenze, B., Haqiq, A., Mousannif, H.: Predicting chronic kidney failure disease using data mining techniques, vol. 397 (2017)
14.
Zurück zum Zitat Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach. Series in Artificial Intelligence. Prentice Hall, Upper Saddle River (2003) MATH Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach. Series in Artificial Intelligence. Prentice Hall, Upper Saddle River (2003) MATH
15.
Zurück zum Zitat Haykin, S.: Neural Networks and Learning Machines. Pearson Prentice Hall, Upper Saddle River (2008). 936 pLinks 3 Haykin, S.: Neural Networks and Learning Machines. Pearson Prentice Hall, Upper Saddle River (2008). 936 pLinks 3
16.
Zurück zum Zitat Nasa, C., Suman, S.: Evaluation of different classification techniques for WEB data. Int. J. Comput. Appl. 52, 34–40 (2012) Nasa, C., Suman, S.: Evaluation of different classification techniques for WEB data. Int. J. Comput. Appl. 52, 34–40 (2012)
17.
Zurück zum Zitat Alam, F., Pachauri, S.: Comparative study of J48, Naive Bayes and One-R classification technique for credit card fraud detection using WEKA. Adv. Comput. Sci. Technol. 10, 1731–1743 (2017) Alam, F., Pachauri, S.: Comparative study of J48, Naive Bayes and One-R classification technique for credit card fraud detection using WEKA. Adv. Comput. Sci. Technol. 10, 1731–1743 (2017)
18.
Zurück zum Zitat Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation (1985) Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation (1985)
19.
Zurück zum Zitat Sivanandam, S.N., Deepa, S.N.: Principles of Soft Computing. Wiley, Hoboken (2014) Sivanandam, S.N., Deepa, S.N.: Principles of Soft Computing. Wiley, Hoboken (2014)
20.
Zurück zum Zitat Novakovic, J., Strbac, P., Bulatovic, D.: Toward optimal feature selection using ranking methods and classification algorithms. Yugosl. J. Oper. Res. 21, 119–135 (2011) MathSciNetCrossRef Novakovic, J., Strbac, P., Bulatovic, D.: Toward optimal feature selection using ranking methods and classification algorithms. Yugosl. J. Oper. Res. 21, 119–135 (2011) MathSciNetCrossRef
21.
Zurück zum Zitat Karegowda, A.G., Manjunath, A., Jayaram, M.: Application of genetic algorithm optimized neural network connection weights for medical diagnosis of PIMA Indians diabetes. Int. J. Soft Comput. 2, 15–23 (2011) CrossRef Karegowda, A.G., Manjunath, A., Jayaram, M.: Application of genetic algorithm optimized neural network connection weights for medical diagnosis of PIMA Indians diabetes. Int. J. Soft Comput. 2, 15–23 (2011) CrossRef
22.
Zurück zum Zitat Ashraf, M., Chetty, G., Tran, D.: Feature selection techniques on thyroid, hepatitis, and breast cancer datasets. Int. J. Data Min. Intell. Inf. Technol. Appl. 3, 1–8 (2013) Ashraf, M., Chetty, G., Tran, D.: Feature selection techniques on thyroid, hepatitis, and breast cancer datasets. Int. J. Data Min. Intell. Inf. Technol. Appl. 3, 1–8 (2013)
23.
Zurück zum Zitat Arun Kumar, C., Sooraj, M.P., Ramakrishnan, S.: A comparative performance evaluation of supervised feature selection algorithms on microarray datasets. Procedia Comput. Sci. 115, 209–217 (2017) CrossRef Arun Kumar, C., Sooraj, M.P., Ramakrishnan, S.: A comparative performance evaluation of supervised feature selection algorithms on microarray datasets. Procedia Comput. Sci. 115, 209–217 (2017) CrossRef
Metadaten
Titel
Classification of Chronic Kidney Disease with Genetic Search Intersection Based Feature Selection Technique
verfasst von
Sanat Kumar Sahu
Prem Kumar Chandrakar
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39875-0_2