Skip to main content

2025 | OriginalPaper | Buchkapitel

Classification of Colorectal Cancer Tissues Using Stacking Ensemble Learning

verfasst von : Abhrodeep Das, Animesh Hazra

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advancement in digital pathology has enabled deep learning-based computer vision techniques for automated diagnosis and prognosis of diseases. The essentiality of early detection and prognosis of any cancer category lies in the fact that it can speed up the subsequent medical treatment procedures of patients. About 10% of all cancer cases worldwide are related to colorectal cancer (CRC), and it is also the third most common category of cancer (Egeblad et al. in Dev Cell 18:884–901, 2010). So, it is clinically important to classify and make an objective evaluation of colorectal cancer histological images. The classification performance of current methodologies primarily relies on the use of various combinations of texture-based features and classifiers or transfer learning to classify different organisational kinds. As a result of the diversity of tissue types and characteristics present in histological images, classification is still a challenging task. In this study, we have put forth a novel and effective stacking (Wolpert in Neural Netw 5:241–59, 1992) ensemble (Zhang and Yunqian (eds) Ensemble machine learning: methods and applications. Springer Science; Business Media, 2012) technique for classification on the histopathological image analysis benchmark dataset Kather-5 K (Kather et al. in Sci Rep 6:27988, 2016). The ensemble consists of two cutting-edge deep learning architectures, ResNet18 (He et al. in Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp 770–778) and EfficientNetB0 (Tan and Le Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning 2019 May 24. PMLR, pp 6105–6114), acting as weak learners, and an ANN acting as the meta-learner. The proposed approach obtained a remarkable accuracy of 97.20% in CRC classification on the said dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Kather JN, Weis C-A, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner F (2016) Multi-class texture analysis in colorectal cancer histology. Sci Rep 6:27988CrossRef Kather JN, Weis C-A, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner F (2016) Multi-class texture analysis in colorectal cancer histology. Sci Rep 6:27988CrossRef
5.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 770–778
6.
Zurück zum Zitat Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning 2019 May 24, pp 6105–6114. PMLR Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning 2019 May 24, pp 6105–6114. PMLR
17.
Zurück zum Zitat Sandler M, et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition Sandler M, et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition
20.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10) Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10)
21.
Zurück zum Zitat Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRef Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRef
23.
Zurück zum Zitat Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh KC (2021) Colorectal histology tumor detection using ensemble deep neural network. Eng Appl Artif Intell. 100: 104202 Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh KC (2021) Colorectal histology tumor detection using ensemble deep neural network. Eng Appl Artif Intell. 100: 104202
24.
Zurück zum Zitat Dosovitskiy A, et al (2020) An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, et al (2020) An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929
25.
Zurück zum Zitat Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press
26.
Zurück zum Zitat Martínez-Álvarez F, et al (2020) Coronavirus optimization algorithm: a bioinspired metaheuristic based on the COVID-19 propagation model. Big data 8.4: 308–322 Martínez-Álvarez F, et al (2020) Coronavirus optimization algorithm: a bioinspired metaheuristic based on the COVID-19 propagation model. Big data 8.4: 308–322
27.
Zurück zum Zitat Yang X-S (2009) Firefly algorithms for multimodal optimization. In: international symposium on stochastic algorithms, pp 169–178. Berlin, Heidelberg: Springer Berlin Heidelberg Yang X-S (2009) Firefly algorithms for multimodal optimization. In: international symposium on stochastic algorithms, pp 169–178. Berlin, Heidelberg: Springer Berlin Heidelberg
Metadaten
Titel
Classification of Colorectal Cancer Tissues Using Stacking Ensemble Learning
verfasst von
Abhrodeep Das
Animesh Hazra
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_10