Skip to main content
Erschienen in: Neural Computing and Applications 9/2021

01.08.2020 | Original Article

Classification of olive leaf diseases using deep convolutional neural networks

verfasst von: Sinan Uğuz, Nese Uysal

Erschienen in: Neural Computing and Applications | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in certain regions of the world. The disease types that affect the olive plants vary on the region where it is grown. This study presents a data set consisting of 3400 olive leaves samples which also includes healthy leaves so as to detect Aculus olearius and Olive peacock spot diseases, which are common olive plant diseases in Turkey. This experimental study used transfer learning methods on VGG16 and VGG19 architectures, as well as on our proposed CNN architecture. Effects of data augmentation on performance were one aim of this research. In the experimental studies which applied data augmentation the highest success value in trained models was 95%, whereas in the experiments without data augmentation the highest value was 88%. Another subject of this research is the Adam, AdaGrad, Stochastic gradient descent and RMS Prop optimization algorithms’ effect on the network’s performance. As a result of the conducted experiments, Adam and SGD optimization algorithms were generally observed to generate superior results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights
2.
Zurück zum Zitat Odegard I, Van der Voet E (2014) The future of food—scenarios and the effect on natural resource use in agriculture in 2050. Ecol Econ 97:51–59CrossRef Odegard I, Van der Voet E (2014) The future of food—scenarios and the effect on natural resource use in agriculture in 2050. Ecol Econ 97:51–59CrossRef
3.
Zurück zum Zitat Gregory PJ, Johnson SN, Newton AC, Ingram JS (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60(10):2827–2838CrossRef Gregory PJ, Johnson SN, Newton AC, Ingram JS (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60(10):2827–2838CrossRef
4.
Zurück zum Zitat Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419CrossRef Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419CrossRef
5.
Zurück zum Zitat Dong H, Zhang X, Choen Y, Zhou Y, Li W, Li Z (2006) Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Crop Prot 25(4):324–330CrossRef Dong H, Zhang X, Choen Y, Zhou Y, Li W, Li Z (2006) Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Crop Prot 25(4):324–330CrossRef
6.
Zurück zum Zitat Braunack M, Garside A, Magarey R (2012) Reduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, Australia. Soil Tillage Res 120:85–91CrossRef Braunack M, Garside A, Magarey R (2012) Reduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, Australia. Soil Tillage Res 120:85–91CrossRef
7.
Zurück zum Zitat Kaur S, Pandey S, Goel S (2019) Plants disease identification and classification through leaf images: a survey. Arch Comput Methods Eng 26(2):507–530CrossRef Kaur S, Pandey S, Goel S (2019) Plants disease identification and classification through leaf images: a survey. Arch Comput Methods Eng 26(2):507–530CrossRef
9.
Zurück zum Zitat Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü
10.
Zurück zum Zitat Çetin H, Alaoglu O (2006) Mut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleri. Turk Entomol Derg 30(4):303–315 Çetin H, Alaoglu O (2006) Mut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleri. Turk Entomol Derg 30(4):303–315
11.
Zurück zum Zitat Obanor FO, Jaspers MV, Jones EE, Walter M (2008) Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand. Crop Prot 27(10):1335–1342CrossRef Obanor FO, Jaspers MV, Jones EE, Walter M (2008) Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand. Crop Prot 27(10):1335–1342CrossRef
12.
Zurück zum Zitat Ashqar BA, Abu-Naser SS (2018) Image-based tomato leaves diseases detection using deep learning. Int J Acad Eng Res 2(12):10–16 Ashqar BA, Abu-Naser SS (2018) Image-based tomato leaves diseases detection using deep learning. Int J Acad Eng Res 2(12):10–16
13.
Zurück zum Zitat Adeel A, Khan MA, Sharif M, Azam F, Shah JH, Umer T, Wan S (2019) Diagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustain Comput Inform Syst 24:100349 Adeel A, Khan MA, Sharif M, Azam F, Shah JH, Umer T, Wan S (2019) Diagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustain Comput Inform Syst 24:100349
14.
Zurück zum Zitat Al-Tarawneh MS (2013) An empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classification. World Appl Sci J 23(9):1207–1211 Al-Tarawneh MS (2013) An empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classification. World Appl Sci J 23(9):1207–1211
15.
Zurück zum Zitat Ashourloo D, Aghighi H, Matkan AA, Mobasheri MR, Rad AM (2016) An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4344–4351CrossRef Ashourloo D, Aghighi H, Matkan AA, Mobasheri MR, Rad AM (2016) An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4344–4351CrossRef
16.
Zurück zum Zitat Lisu C, Yuanyuan S, Ke W (2017) Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics. Int J Agric Biol Eng 10(3):158–164 Lisu C, Yuanyuan S, Ke W (2017) Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics. Int J Agric Biol Eng 10(3):158–164
17.
Zurück zum Zitat Asraf HM, Nooritawati M, Rizam MS (2012) A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease. Proc Eng 41:1353–1359CrossRef Asraf HM, Nooritawati M, Rizam MS (2012) A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease. Proc Eng 41:1353–1359CrossRef
18.
Zurück zum Zitat Borhan M, Panigrahi S, Satter M, Gu H (2017) Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Inform Process Agric 4(4):275–282 Borhan M, Panigrahi S, Satter M, Gu H (2017) Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Inform Process Agric 4(4):275–282
19.
Zurück zum Zitat Ji-Yong S, Xiao-Bo Z, Jie-Wen Z, Kai-Liang W, Zheng-Wei C, Xiao-Wei H, De-Tao Z, Holmes M (2012) Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci Hortic 138:190–197CrossRef Ji-Yong S, Xiao-Bo Z, Jie-Wen Z, Kai-Liang W, Zheng-Wei C, Xiao-Wei H, De-Tao Z, Holmes M (2012) Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci Hortic 138:190–197CrossRef
20.
Zurück zum Zitat Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S, Ocimati W, Blomme G (2019) AI-powered banana diseases and pest detection. Plant Methods 15(1):92CrossRef Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S, Ocimati W, Blomme G (2019) AI-powered banana diseases and pest detection. Plant Methods 15(1):92CrossRef
21.
Zurück zum Zitat Zhang K, Xu Z, Dong S, Cen C, Wu Q (2019) Identification of peach leaf disease infected by Xanthomonas campestris with deep learning. Eng Agric Environ Food 12(4):388–396CrossRef Zhang K, Xu Z, Dong S, Cen C, Wu Q (2019) Identification of peach leaf disease infected by Xanthomonas campestris with deep learning. Eng Agric Environ Food 12(4):388–396CrossRef
22.
Zurück zum Zitat Priyadharshini RA, Arivazhagan S, Arun M, Mirnalini A (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl 31(12):8887–8895CrossRef Priyadharshini RA, Arivazhagan S, Arun M, Mirnalini A (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl 31(12):8887–8895CrossRef
24.
Zurück zum Zitat Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018 Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018
25.
Zurück zum Zitat Fuentes A, Yoon S, Kim S, Park D (2017) A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9):2022CrossRef Fuentes A, Yoon S, Kim S, Park D (2017) A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9):2022CrossRef
26.
Zurück zum Zitat Lu J, Hu J, Zhao G, Mei F, Zhang C (2017) An in-field automatic wheat disease diagnosis system. Comput Electron Agric 142:369–379CrossRef Lu J, Hu J, Zhao G, Mei F, Zhang C (2017) An in-field automatic wheat disease diagnosis system. Comput Electron Agric 142:369–379CrossRef
27.
Zurück zum Zitat Liu B, Zhang Y, He D, Li Y (2018) Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1):11CrossRef Liu B, Zhang Y, He D, Li Y (2018) Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1):11CrossRef
28.
Zurück zum Zitat Hu G, Yang X, Zhang Y, Wan M (2019) Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain Comput Info Syst 24:100353 Hu G, Yang X, Zhang Y, Wan M (2019) Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain Comput Info Syst 24:100353
29.
Zurück zum Zitat Barbedo JGA (2019) Plant disease identification from individual lesions and spots using deep learning. Biosys Eng 180:96–107CrossRef Barbedo JGA (2019) Plant disease identification from individual lesions and spots using deep learning. Biosys Eng 180:96–107CrossRef
30.
Zurück zum Zitat Geetharamani G, Pandian A (2019) Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput Electr Eng 76:323–338CrossRef Geetharamani G, Pandian A (2019) Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput Electr Eng 76:323–338CrossRef
31.
Zurück zum Zitat Too EC, Yujian L, Njuki S, Yingchun L (2019) A comparative study of fine-tuning deep learning models for plant disease identification. Comput Electron Agric 161:272–279CrossRef Too EC, Yujian L, Njuki S, Yingchun L (2019) A comparative study of fine-tuning deep learning models for plant disease identification. Comput Electron Agric 161:272–279CrossRef
32.
Zurück zum Zitat Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311–318CrossRef Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311–318CrossRef
33.
Zurück zum Zitat Alruwaili M, Alanazi S, El-Ghany SA, Shehab A (2019) An efficient deep learning model for olive diseases detection. Int J Adv Comput Sci Appl 10(8):486–492 Alruwaili M, Alanazi S, El-Ghany SA, Shehab A (2019) An efficient deep learning model for olive diseases detection. Int J Adv Comput Sci Appl 10(8):486–492
34.
Zurück zum Zitat Cruz AC, Luvisi A, De Bellis L, Ampatzidis Y (2017) X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front Plant Sci 8:1741CrossRef Cruz AC, Luvisi A, De Bellis L, Ampatzidis Y (2017) X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front Plant Sci 8:1741CrossRef
35.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
36.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105
37.
Zurück zum Zitat Uğuz S (2019) Makine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü. Nobel Academic Publish, Turkey (in Turkish) Uğuz S (2019) Makine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü. Nobel Academic Publish, Turkey (in Turkish)
38.
Zurück zum Zitat Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6 Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6
40.
Zurück zum Zitat Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90CrossRef Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90CrossRef
41.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​14091556
42.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​150203167
43.
Zurück zum Zitat Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural networks for computer vision. Synth Lect Comput Vis 8(1):1–207 Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural networks for computer vision. Synth Lect Comput Vis 8(1):1–207
44.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
45.
Zurück zum Zitat Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068 Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068
46.
Zurück zum Zitat Subramanian V (2018) Deep learning with PyTorch: a practical approach to building neural network models using PyTorch. Packt Publishing Ltd, Birmingham Subramanian V (2018) Deep learning with PyTorch: a practical approach to building neural network models using PyTorch. Packt Publishing Ltd, Birmingham
47.
Zurück zum Zitat Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V (2019) Python deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow. Pack Publishing, Birmingham Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V (2019) Python deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow. Pack Publishing, Birmingham
48.
Zurück zum Zitat Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B (2019) Analysis of transfer learning for deep neural network based plant classification models. Comput Electron Agric 158:20–29CrossRef Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B (2019) Analysis of transfer learning for deep neural network based plant classification models. Comput Electron Agric 158:20–29CrossRef
Metadaten
Titel
Classification of olive leaf diseases using deep convolutional neural networks
verfasst von
Sinan Uğuz
Nese Uysal
Publikationsdatum
01.08.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05235-5

Weitere Artikel der Ausgabe 9/2021

Neural Computing and Applications 9/2021 Zur Ausgabe