Skip to main content

2025 | OriginalPaper | Buchkapitel

Classification of Parkinson’s and Control Subjects with Machine Learning

verfasst von : Ritu, Moumi Pandit, Akash Kumar Bhoi

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many debilitating, fatal disorders, like Parkinson's disease, which are becoming more common, exhibit neurodegeneration. Development of unique, more potent medicinal approaches is crucial in order to fight these deadly diseases. Commercial gait detection systems based on force plates and footprints have been effectively used in the clinical diagnosis of such diseases. The classification of model for old versus young subjects with and without neurodegenerative diseases was constructed using MATLAB software. The analysis with respect to stride interval is mentioned in this paper. The 15 subjects were taken for this experiment; among these, five healthy young as well as old individuals were considered and five older adults with Parkinson’s disease were taken. Therefore, the two classes were formed using SVM kernel modeling for the diseased and healthy subjects. The classification for stride length interval (0.95–1.5 s) for SVM modeling was providing 96.7% validation accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
9.
Zurück zum Zitat Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJG, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM, MDS-Scientific Issues Committee (2022) Discussion of research priorities for gait disorders in Parkinson's disease. Mov Disord: Off J Mov Disord Soc, 37(2): 253–263. https://doi.org/10.1002/mds.28883 Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJG, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM, MDS-Scientific Issues Committee (2022) Discussion of research priorities for gait disorders in Parkinson's disease. Mov Disord: Off J Mov Disord Soc, 37(2): 253–263. https://​doi.​org/​10.​1002/​mds.​28883
12.
14.
Zurück zum Zitat A, M, Najarian K (2020) Radial basis function kernel optimization for support vector machine classifiers. ArXiv. /abs/2007.08233 A, M, Najarian K (2020) Radial basis function kernel optimization for support vector machine classifiers. ArXiv. /abs/2007.08233
24.
Zurück zum Zitat Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine LM, Eberling J, Espay AJ, Foster ED, Leverenz JB, Litvan I, Richard I, Troyer MD, Hawkins KA, Initiative PPM (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 30(7):919–927. https://doi.org/10.1002/mds.26170CrossRef Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine LM, Eberling J, Espay AJ, Foster ED, Leverenz JB, Litvan I, Richard I, Troyer MD, Hawkins KA, Initiative PPM (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 30(7):919–927. https://​doi.​org/​10.​1002/​mds.​26170CrossRef
30.
Zurück zum Zitat Breiman L, Friedman J, Olshen R, Stone C, (eds) (1984) Classification and regression trees. CRC Press, Boca Raton, FL Breiman L, Friedman J, Olshen R, Stone C, (eds) (1984) Classification and regression trees. CRC Press, Boca Raton, FL
31.
Zurück zum Zitat Gonzalo M, Brewer M, Anderson C, Sullivan D, Gray S, van der Knaap E (2009) Tomato fruit shape analysis using morphometric and morphology attributesimplemented in tomato analyzer software program. J Am Soc Hortic 134:77–87CrossRef Gonzalo M, Brewer M, Anderson C, Sullivan D, Gray S, van der Knaap E (2009) Tomato fruit shape analysis using morphometric and morphology attributesimplemented in tomato analyzer software program. J Am Soc Hortic 134:77–87CrossRef
32.
Zurück zum Zitat Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182 Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
33.
Zurück zum Zitat Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158CrossRef Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158CrossRef
34.
Zurück zum Zitat Kira K, Rendell L (1992) A practical approach to feature selection. In: international conference on machine learning, pp 368–377 Kira K, Rendell L (1992) A practical approach to feature selection. In: international conference on machine learning, pp 368–377
35.
Zurück zum Zitat Kohavi R, John G (1997) Wrappers for features subset selection. Artif Intell 97:273–324CrossRef Kohavi R, John G (1997) Wrappers for features subset selection. Artif Intell 97:273–324CrossRef
36.
Zurück zum Zitat Kohavi R, Provost F (1998) On applied research in machine learning. in editorial for the special issue on applications of machine learning and the knowledge discovery process, Columbia University, New York, vol 30 Kohavi R, Provost F (1998) On applied research in machine learning. in editorial for the special issue on applications of machine learning and the knowledge discovery process, Columbia University, New York, vol 30
37.
Zurück zum Zitat Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125CrossRef Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125CrossRef
38.
Zurück zum Zitat Rodriguez S, Moyseenko J, Robbins M, Huarachi Morejn N, Francis D, van der Knaap E (2010) Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp 37:e1856 Rodriguez S, Moyseenko J, Robbins M, Huarachi Morejn N, Francis D, van der Knaap E (2010) Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp 37:e1856
39.
Zurück zum Zitat Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1(1):7–31CrossRef Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1(1):7–31CrossRef
40.
Zurück zum Zitat Xin E, Jordan M, Karp R (2001) Feature selection for high-dimensional genomic microarray data. In: Proceedings of the 18 international conference in machine learning ICML-2001, pp 601–608 Xin E, Jordan M, Karp R (2001) Feature selection for high-dimensional genomic microarray data. In: Proceedings of the 18 international conference in machine learning ICML-2001, pp 601–608
41.
Zurück zum Zitat Visa S, Ramsay B, Ralescu A, Knaap E (2011) Confusion matrix-based feature selection. CEUR Workshop Proc 710:120–127 Visa S, Ramsay B, Ralescu A, Knaap E (2011) Confusion matrix-based feature selection. CEUR Workshop Proc 710:120–127
43.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. I. M. De Diego et al 1 3 Bishop CM (2006) Pattern recognition and machine learning. I. M. De Diego et al 1 3
45.
Zurück zum Zitat Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159CrossRef Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159CrossRef
46.
Zurück zum Zitat Chicco D, Jurman G (2020) The advantages of the matthews correlation coefcient (mcc) over f1 score and accuracy in binary classifcation evaluation. BMC Genom 21(1):6CrossRef Chicco D, Jurman G (2020) The advantages of the matthews correlation coefcient (mcc) over f1 score and accuracy in binary classifcation evaluation. BMC Genom 21(1):6CrossRef
47.
Zurück zum Zitat Cohen P (1982) To be or not to be: control and balancing of type i and type ii errors. Eval Program Plann 5(3):247–253CrossRef Cohen P (1982) To be or not to be: control and balancing of type i and type ii errors. Eval Program Plann 5(3):247–253CrossRef
48.
Zurück zum Zitat Demšar J (2006) Statistical comparisons of classifers over multiple data sets. J Mach Learn Res 7:1–30MathSciNet Demšar J (2006) Statistical comparisons of classifers over multiple data sets. J Mach Learn Res 7:1–30MathSciNet
51.
Zurück zum Zitat Goodall DW (1967) The distribution of the matching coefficient. Biometrics, pp 647–656 Goodall DW (1967) The distribution of the matching coefficient. Biometrics, pp 647–656
52.
Zurück zum Zitat Gorodkin J (2004) Comparing two k-category assignments by a k-category correlation coefcient. Comput Biol Chem 28(5–6):367–374CrossRef Gorodkin J (2004) Comparing two k-category assignments by a k-category correlation coefcient. Comput Biol Chem 28(5–6):367–374CrossRef
53.
Zurück zum Zitat Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv:200805756 Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv:200805756
54.
Zurück zum Zitat Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145CrossRef Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145CrossRef
55.
Zurück zum Zitat Halligan S, Altman DG, Mallett S (2015) Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. Eur Radiol 25(4):932–939CrossRef Halligan S, Altman DG, Mallett S (2015) Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. Eur Radiol 25(4):932–939CrossRef
56.
Zurück zum Zitat Hu C, Wang Y, Gu J (2020) Cross-domain intelligent fault classifcation of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks. Knowl-Based Syst 209:106214CrossRef Hu C, Wang Y, Gu J (2020) Cross-domain intelligent fault classifcation of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks. Knowl-Based Syst 209:106214CrossRef
57.
Zurück zum Zitat Hu C, He S, Wang Y (2021) A classifcation method to detect faults in a rotating machinery based on kernelled support tensor machine and multilinear principal component analysis. Appl Intell 51(4):2609–2621CrossRef Hu C, He S, Wang Y (2021) A classifcation method to detect faults in a rotating machinery based on kernelled support tensor machine and multilinear principal component analysis. Appl Intell 51(4):2609–2621CrossRef
58.
Zurück zum Zitat Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim et Biophys Acta (BBA)-Protein Struct. 405(2): 442–451 Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim et Biophys Acta (BBA)-Protein Struct. 405(2): 442–451
59.
Zurück zum Zitat Norris N (1940) The standard errors of the geometric and harmonic means and their application to index numbers. Ann Math Stat 11(4):445–448MathSciNetCrossRef Norris N (1940) The standard errors of the geometric and harmonic means and their application to index numbers. Ann Math Stat 11(4):445–448MathSciNetCrossRef
60.
Zurück zum Zitat Ogbi MSZ (2012) A mathematical property of the harmonic mean. in: the 6th international days of statistics and economics. Prague University of Economics and Business, pp 873–877 Ogbi MSZ (2012) A mathematical property of the harmonic mean. in: the 6th international days of statistics and economics. Prague University of Economics and Business, pp 873–877
61.
Zurück zum Zitat Opitz J, Burst S (2019) Macro f1 and macro f1. arXiv: 191103347 Opitz J, Burst S (2019) Macro f1 and macro f1. arXiv: 191103347
62.
Zurück zum Zitat Powers DM (2020) Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv: 201016061 Powers DM (2020) Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv: 201016061
63.
Zurück zum Zitat Puthiya Parambath S, Usunier N, Grandvalet Y (2014) Optimizing f-measures by cost-sensitive classifcation. Adv Neural Inf Process Syst 27:2123–2131 Puthiya Parambath S, Usunier N, Grandvalet Y (2014) Optimizing f-measures by cost-sensitive classifcation. Adv Neural Inf Process Syst 27:2123–2131
64.
Zurück zum Zitat Redondo AR, Navarro J, Fernández RR, de Diego IM, Moguerza JM, Fernández-Muñoz JJ (2020) Unifed performance measure for binary classifcation problems. In: International conference on intelligent data engineering and automated learning. Springer, pp 104–112 Redondo AR, Navarro J, Fernández RR, de Diego IM, Moguerza JM, Fernández-Muñoz JJ (2020) Unifed performance measure for binary classifcation problems. In: International conference on intelligent data engineering and automated learning. Springer, pp 104–112
65.
Zurück zum Zitat Sasaki Y, Fellow R (2007) The truth of the f-measure, manchester: Mib-school of computer science. University of Manchester, p 25 Sasaki Y, Fellow R (2007) The truth of the f-measure, manchester: Mib-school of computer science. University of Manchester, p 25
66.
Zurück zum Zitat Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classifcation tasks. Inf Process Manag 45(4):427–437CrossRef Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classifcation tasks. Inf Process Manag 45(4):427–437CrossRef
67.
Zurück zum Zitat Tharwat A (2020) Classifcation assessment methods. N Engl J Entrep Tharwat A (2020) Classifcation assessment methods. N Engl J Entrep
68.
Zurück zum Zitat Han S, Qubo C, Meng H (2012) Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp 1-4 Han S, Qubo C, Meng H (2012) Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp 1-4
72.
Zurück zum Zitat Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In; proceedings of European conference on machine learning, lecture notes in computer science 3201: 39–50 Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In; proceedings of European conference on machine learning, lecture notes in computer science 3201: 39–50
74.
Zurück zum Zitat Ancona N, Cicirelli G, Branca A, Distante A (2001) Goal detection in football by using support vector machines for classification. In: proceedings of international joint conference on neural networks1: 611–616 Ancona N, Cicirelli G, Branca A, Distante A (2001) Goal detection in football by using support vector machines for classification. In: proceedings of international joint conference on neural networks1: 611–616
77.
Zurück zum Zitat Azimi-Sadjadi MR, Zekavat SA (2000) Cloud classification using support vector machines. In Proceedings of IEEE geoscience and remote sensing symposium 2: 669–671 Azimi-Sadjadi MR, Zekavat SA (2000) Cloud classification using support vector machines. In Proceedings of IEEE geoscience and remote sensing symposium 2: 669–671
78.
Zurück zum Zitat Bennett K, Ji X, Hu J, Kunapuli G, Pang JS (2006) Model selection via bilevel optimization. In: Proceedings of IEEE world congress on computational intelligence, pp 1922–1929 Bennett K, Ji X, Hu J, Kunapuli G, Pang JS (2006) Model selection via bilevel optimization. In: Proceedings of IEEE world congress on computational intelligence, pp 1922–1929
79.
Zurück zum Zitat Bennett K, Parrado-Hernández E (2006) The interplay of optimization and machine learning research. J Mach Learn Res 7:1265–1281MathSciNet Bennett K, Parrado-Hernández E (2006) The interplay of optimization and machine learning research. J Mach Learn Res 7:1265–1281MathSciNet
80.
Zurück zum Zitat Borgwardt KM (2011) Kernel methods in bioinformatics. Handbook of statistical bioinformatics. Part 3, pp 317–334 Borgwardt KM (2011) Kernel methods in bioinformatics. Handbook of statistical bioinformatics. Part 3, pp 317–334
81.
Zurück zum Zitat Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University PressCrossRef Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University PressCrossRef
82.
Zurück zum Zitat Bradley PS, Mangasarian OL, Street WN (1998) Feature selection via mathematical programming. INFORMS J Comput Spring 10(2):209–217MathSciNetCrossRef Bradley PS, Mangasarian OL, Street WN (1998) Feature selection via mathematical programming. INFORMS J Comput Spring 10(2):209–217MathSciNetCrossRef
83.
Zurück zum Zitat Bradley P, Mangasarian O (1998) Feature selection via concave minimization and support vector machines. In: Proceedings of international conference on machine learning, Morgan Kaufmann, pp 82–90 Bradley P, Mangasarian O (1998) Feature selection via concave minimization and support vector machines. In: Proceedings of international conference on machine learning, Morgan Kaufmann, pp 82–90
87.
Zurück zum Zitat Chang KW, Hsieh CJ, Lin CJ (2008) Coordinate descent method for large-scale L2-loss linear SVM. J Mach Learn Res 9:1369–1398MathSciNet Chang KW, Hsieh CJ, Lin CJ (2008) Coordinate descent method for large-scale L2-loss linear SVM. J Mach Learn Res 9:1369–1398MathSciNet
91.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support vector networks. In: Proceedings of machine learning. 20: 273–297 Cortes C, Vapnik V (1995) Support vector networks. In: Proceedings of machine learning. 20: 273–297
92.
Zurück zum Zitat Crammer K, Singer Y (2001) On the algorithmic implementation of multi-class kernel based vector machines. J Mach Learn Res 2:265–292 Crammer K, Singer Y (2001) On the algorithmic implementation of multi-class kernel based vector machines. J Mach Learn Res 2:265–292
93.
Zurück zum Zitat Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef
Metadaten
Titel
Classification of Parkinson’s and Control Subjects with Machine Learning
verfasst von
Ritu
Moumi Pandit
Akash Kumar Bhoi
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_8