Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2011 | Original Article | Ausgabe 3/2011

International Journal of Machine Learning and Cybernetics 3/2011

Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 3/2011
Autoren:
Omer Boehm, David R. Hardoon, Larry M. Manevitz

Abstract

It is generally assumed that one-class machine learning techniques can not reach the performance level of two-class techniques. The importance of this work is that while one-class is often the appropriate classification setting for identifying cognitive brain functions, most work in the literature has focused on two-class methods. In this paper, we demonstrate how one-class recognition of cognitive brain functions across multiple subjects can be performed at the 90% level of accuracy via an appropriate choice of features which can be chosen automatically. Our work extends one-class work by Hardoon and Manevitz (fMRI analysis via one-class machine learning techniques. In: Proceedings of the Nineteenth IJCAI, pp 1604–1605, 2005), where such classification was first shown to be possible in principle albeit with an accuracy of about 60%. The results of this paper are also comparable to work of various groups around the world e.g. Cox and Savoy (NeuroImage 19:261–270, 2003), Mourao-Miranda et al. (NeuroImage, 2006) and Mitchell et al., (Mach Learn 57:145–175, 2004) which have concentrated on two-class classification. The strengthening in the feature selection was accomplished by the use of a genetic algorithm run inside the context of a wrapper approach around a compression neural network for the basic one-class identification. In addition, versions of one-class SVM due to Scholkopf et al. (Estimating the support of a high-dimensional distribution. Technical Report MSR-TR-99-87, Microsoft Research, 1999) and Manevitz and Yousef (J Mach Learn Res 2:139–154, 2001) were investigated.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2011

International Journal of Machine Learning and Cybernetics 3/2011 Zur Ausgabe

Editorial

Editorial