Skip to main content

2018 | OriginalPaper | Buchkapitel

Classifying Mammography Images by Using Fuzzy Cognitive Maps and a New Segmentation Algorithm

verfasst von : Abdollah Amirkhani, Mojtaba Kolahdoozi, Elpiniki I. Papageorgiou, Mohammad R. Mosavi

Erschienen in: Advanced Data Analytics in Health

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mammography is one of the best techniques for the early detection of breast cancer. In this chapter, a method based on fuzzy cognitive map (FCM) and its evolutionary-based learning capabilities is presented for classifying mammography images. The main contribution of this work is two-fold: (a) to propose a new segmentation approach called the threshold based region growing (TBRG) algorithm for segmentation of mammography images, and (b) to implement FCM method in the context of mammography image classification by developing a new FCM learning algorithm efficient for tumor classification. By applying the proposed (TBRG) algorithm, a possible tumor is delineated against the background tissue. We extracted 36 features from the tissue, describing the texture and the boundary of the segmented region. Due to the curse of dimensionality of features space, the features were selected with the help of the continuous particle swarm optimization algorithm. The FCM was trained using a new evolutionary approach based on the area under curve (AUC) of the output concept. In order to evaluate the efficacy of the presented scheme, comparisons with benchmark machine learning algorithms were conducted and known metrics like ROC, AUC were calculated. The AUC obtained for the test data set is 87.11%, which indicates the excellent performance of the proposed FCM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan strategic anti-cancer randomized trial (J-START): a randomised controlled trial. Lancet 387:341–348CrossRef Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan strategic anti-cancer randomized trial (J-START): a randomised controlled trial. Lancet 387:341–348CrossRef
3.
Zurück zum Zitat Kemp Jacobsen K, O’meara ES, Key D, et al (2015) Comparing sensitivity and specificity of screening mammography in the United States and Denmark. Int J Cancer 137:2198–2207CrossRef Kemp Jacobsen K, O’meara ES, Key D, et al (2015) Comparing sensitivity and specificity of screening mammography in the United States and Denmark. Int J Cancer 137:2198–2207CrossRef
4.
Zurück zum Zitat Du K-L, Swamy MNS (2016) Particle swarm optimization. In: Search and optimization by metaheuristics. Springer, pp 153–173CrossRef Du K-L, Swamy MNS (2016) Particle swarm optimization. In: Search and optimization by metaheuristics. Springer, pp 153–173CrossRef
5.
Zurück zum Zitat Mandal D, Chatterjee A, Maitra M (2017) Particle swarm optimization based fast Chan-Vese algorithm for medical image segmentation. In: Metaheuristics for medicine and biology. Springer, pp 49–74CrossRef Mandal D, Chatterjee A, Maitra M (2017) Particle swarm optimization based fast Chan-Vese algorithm for medical image segmentation. In: Metaheuristics for medicine and biology. Springer, pp 49–74CrossRef
6.
Zurück zum Zitat Mustra M, Grgic M, Rangayyan RM (2016) Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms. Med Biol Eng Comput 54:1003–1024CrossRef Mustra M, Grgic M, Rangayyan RM (2016) Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms. Med Biol Eng Comput 54:1003–1024CrossRef
7.
Zurück zum Zitat de Oliveira Silva LC, Barros AK, Lopes MV (2017) Detecting masses in dense breast using independent component analysis. Artif Intell Med 80:29–38CrossRef de Oliveira Silva LC, Barros AK, Lopes MV (2017) Detecting masses in dense breast using independent component analysis. Artif Intell Med 80:29–38CrossRef
8.
Zurück zum Zitat Amirkhani A, Papageorgiou EI, Mohseni A, Mosavi MR (2017) A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications. Comput Methods Programs Biomed 142:129–145CrossRef Amirkhani A, Papageorgiou EI, Mohseni A, Mosavi MR (2017) A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications. Comput Methods Programs Biomed 142:129–145CrossRef
9.
Zurück zum Zitat Strand F, Humphreys K, Cheddad A et al (2016) Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 18:100CrossRef Strand F, Humphreys K, Cheddad A et al (2016) Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 18:100CrossRef
10.
Zurück zum Zitat Chokri F, Farida MH (2016) Mammographic mass classification according to Bi-RADS lexicon. IET Comput Vis 11:189–198CrossRef Chokri F, Farida MH (2016) Mammographic mass classification according to Bi-RADS lexicon. IET Comput Vis 11:189–198CrossRef
11.
Zurück zum Zitat Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42:990–1002CrossRef Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42:990–1002CrossRef
12.
Zurück zum Zitat Deng H, Deng W, Sun X et al (2017) Mammogram enhancement using intuitionistic fuzzy sets. IEEE Trans Biomed Eng 64:1803–1814CrossRef Deng H, Deng W, Sun X et al (2017) Mammogram enhancement using intuitionistic fuzzy sets. IEEE Trans Biomed Eng 64:1803–1814CrossRef
13.
Zurück zum Zitat Jenifer S, Parasuraman S, Kadirvelu A (2016) Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl Soft Comput 42:167–177CrossRef Jenifer S, Parasuraman S, Kadirvelu A (2016) Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl Soft Comput 42:167–177CrossRef
15.
Zurück zum Zitat Yu S, Guan L (2000) A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans Med Imaging 19:115–126CrossRef Yu S, Guan L (2000) A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans Med Imaging 19:115–126CrossRef
16.
Zurück zum Zitat Buciu I, Gacsadi A (2011) Directional features for automatic tumor classification of mammogram images. Biomed Signal Process Control 6:370–378CrossRef Buciu I, Gacsadi A (2011) Directional features for automatic tumor classification of mammogram images. Biomed Signal Process Control 6:370–378CrossRef
17.
Zurück zum Zitat Arivazhagan S, Ganesan L, Priyal SP (2006) Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognit Lett 27:1976–1982CrossRef Arivazhagan S, Ganesan L, Priyal SP (2006) Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognit Lett 27:1976–1982CrossRef
18.
Zurück zum Zitat Ganesan K, Acharya UR, Chua CK et al (2014) One-class classification of mammograms using trace transform functionals. IEEE Trans Instrum Meas 63:304–311CrossRef Ganesan K, Acharya UR, Chua CK et al (2014) One-class classification of mammograms using trace transform functionals. IEEE Trans Instrum Meas 63:304–311CrossRef
19.
Zurück zum Zitat Deans SR (2007) The Radon transform and some of its applications. Courier Corporation Deans SR (2007) The Radon transform and some of its applications. Courier Corporation
20.
Zurück zum Zitat Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8:910–920CrossRef Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8:910–920CrossRef
21.
Zurück zum Zitat Kallenberg M, Petersen K, Nielsen M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 35:1322–1331CrossRef Kallenberg M, Petersen K, Nielsen M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 35:1322–1331CrossRef
22.
Zurück zum Zitat Arevalo J, González FA, Ramos-Pollán R et al (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed 127:248–257CrossRef Arevalo J, González FA, Ramos-Pollán R et al (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed 127:248–257CrossRef
23.
Zurück zum Zitat Kerre EE, Nachtegael M (2013) Fuzzy techniques in image processing. Physica Kerre EE, Nachtegael M (2013) Fuzzy techniques in image processing. Physica
24.
Zurück zum Zitat Aminikhanghahi S, Shin S, Wang W et al (2017) A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification. Multimed Tools Appl 76:10191–10205CrossRef Aminikhanghahi S, Shin S, Wang W et al (2017) A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification. Multimed Tools Appl 76:10191–10205CrossRef
25.
Zurück zum Zitat Pavan ALM, Vacavant A, Trindade AP, de Pina DR (2017) Fibroglandular tissue quantification in mammography by optimized fuzzy C-means with variable compactness. IRBM 38:228–233CrossRef Pavan ALM, Vacavant A, Trindade AP, de Pina DR (2017) Fibroglandular tissue quantification in mammography by optimized fuzzy C-means with variable compactness. IRBM 38:228–233CrossRef
26.
Zurück zum Zitat Goebel PM, Belbachir AN, Truppe M (2005) Noise estimation in panoramic X-ray images: An application analysis approach. In: 2005 IEEE/SP 13th workshop on statistical signal processing, pp 996–1001 Goebel PM, Belbachir AN, Truppe M (2005) Noise estimation in panoramic X-ray images: An application analysis approach. In: 2005 IEEE/SP 13th workshop on statistical signal processing, pp 996–1001
27.
Zurück zum Zitat Hsieh M-H, Cheng F-C, Shie M-C, Ruan S-J (2013) Fast and efficient median filter for removing 1–99% levels of salt-and-pepper noise in images. Eng Appl Artif Intell 26:1333–1338CrossRef Hsieh M-H, Cheng F-C, Shie M-C, Ruan S-J (2013) Fast and efficient median filter for removing 1–99% levels of salt-and-pepper noise in images. Eng Appl Artif Intell 26:1333–1338CrossRef
28.
Zurück zum Zitat Qayyum A, Basit A (2016) Automatic breast segmentation and cancer detection via SVM in mammograms. In: 2016 International conference on emerging technologies (ICET), pp 1–6 Qayyum A, Basit A (2016) Automatic breast segmentation and cancer detection via SVM in mammograms. In: 2016 International conference on emerging technologies (ICET), pp 1–6
29.
Zurück zum Zitat Tourassi GD, Vargas-Voracek R, Catarious DM, Floyd CE (2003) Computer-assisted detection of mammographic masses: a template matching scheme based on mutual information. Med Phys 30:2123–2130CrossRef Tourassi GD, Vargas-Voracek R, Catarious DM, Floyd CE (2003) Computer-assisted detection of mammographic masses: a template matching scheme based on mutual information. Med Phys 30:2123–2130CrossRef
30.
Zurück zum Zitat Lau T-K, Bischof WF (1991) Automated detection of breast tumors using the asymmetry approach. Comput Biomed Res 24:273–295CrossRef Lau T-K, Bischof WF (1991) Automated detection of breast tumors using the asymmetry approach. Comput Biomed Res 24:273–295CrossRef
31.
Zurück zum Zitat Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm optimisation for feature selection. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8 Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm optimisation for feature selection. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
32.
Zurück zum Zitat Bueno S, Salmeron JL (2009) Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst Appl 36:5221–5229CrossRef Bueno S, Salmeron JL (2009) Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst Appl 36:5221–5229CrossRef
33.
Zurück zum Zitat Grant D, Osei-Bryson K-M (2005) Using fuzzy cognitive maps to assess MIS organizational change impact. In: Proceedings of the 38th annual Hawaii international conference on system sciences, HICSS’05, 2005, p 263c–263c Grant D, Osei-Bryson K-M (2005) Using fuzzy cognitive maps to assess MIS organizational change impact. In: Proceedings of the 38th annual Hawaii international conference on system sciences, HICSS’05, 2005, p 263c–263c
34.
Zurück zum Zitat Heath M, Bowyer K, Kopans D et al (2000) The digital database for screening mammography. In: Proceedings of the 5th international workshop on digital mammography. pp 212–218 Heath M, Bowyer K, Kopans D et al (2000) The digital database for screening mammography. In: Proceedings of the 5th international workshop on digital mammography. pp 212–218
35.
Zurück zum Zitat Li Y, Chen H, Rohde GK et al (2015) Texton analysis for mass classification in mammograms. Pattern Recognit Lett 52:87–93CrossRef Li Y, Chen H, Rohde GK et al (2015) Texton analysis for mass classification in mammograms. Pattern Recognit Lett 52:87–93CrossRef
36.
Zurück zum Zitat Surendiran B, Vadivel A (2010) Feature selection using stepwise ANOVA discriminant analysis for mammogram mass classification. Int J Recent Trends Eng Technol 3:55–57 Surendiran B, Vadivel A (2010) Feature selection using stepwise ANOVA discriminant analysis for mammogram mass classification. Int J Recent Trends Eng Technol 3:55–57
37.
Zurück zum Zitat Choi JY, Kim DH, Plataniotis KN, Ro YM (2016) Classifier ensemble generation and selection with multiple feature representations for classification applications in computer-aided detection and diagnosis on mammography. Expert Syst Appl 46:106–121CrossRef Choi JY, Kim DH, Plataniotis KN, Ro YM (2016) Classifier ensemble generation and selection with multiple feature representations for classification applications in computer-aided detection and diagnosis on mammography. Expert Syst Appl 46:106–121CrossRef
38.
Zurück zum Zitat Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197:221–231CrossRef Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197:221–231CrossRef
39.
Zurück zum Zitat Mandelbrot B (1982) The fractal geometry of nature. WH Freeman Mandelbrot B (1982) The fractal geometry of nature. WH Freeman
40.
Zurück zum Zitat Foroutan-pour K, Dutilleul P, Smith DL (1999) Advances in the implementation of the box-counting method of fractal dimension estimation. Appl Math Comput 105:195–210MATH Foroutan-pour K, Dutilleul P, Smith DL (1999) Advances in the implementation of the box-counting method of fractal dimension estimation. Appl Math Comput 105:195–210MATH
41.
Zurück zum Zitat Cascio D, Fauci F, Magro R et al (2006) Mammogram segmentation by contour searching and mass lesions classification with neural network. IEEE Trans Nucl Sci 53:2827–2833CrossRef Cascio D, Fauci F, Magro R et al (2006) Mammogram segmentation by contour searching and mass lesions classification with neural network. IEEE Trans Nucl Sci 53:2827–2833CrossRef
42.
Zurück zum Zitat Gonzalez RC, Woods RE (2002) Digital image processing. Prentice hall Gonzalez RC, Woods RE (2002) Digital image processing. Prentice hall
43.
Zurück zum Zitat Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005. pp 886–893 Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005. pp 886–893
Metadaten
Titel
Classifying Mammography Images by Using Fuzzy Cognitive Maps and a New Segmentation Algorithm
verfasst von
Abdollah Amirkhani
Mojtaba Kolahdoozi
Elpiniki I. Papageorgiou
Mohammad R. Mosavi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77911-9_6