Skip to main content
Erschienen in: Progress in Artificial Intelligence 3/2021

04.03.2021 | Regular Paper

Classifying multiclass imbalanced data using generalized class-specific extreme learning machine

verfasst von: Bhagat Singh Raghuwanshi, Sanyam Shukla

Erschienen in: Progress in Artificial Intelligence | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning from the imbalanced problem is among the most attractive issues in the contemporary machine learning community. However, the extensive majority of attention in this domain is given to the two-class imbalanced problems, while their much more complex multiclass counterparts are comparatively unexplored. It has been shown (Huang et al. in IEEE Trans Syst Man Cybern B (Cybern) 42(2):513–529, 2012) that extreme learning machine (ELM) achieves much better generalization performance compared to support vector machine (SVM) and least-squares support vector machine (LS-SVM) for multiclass classification problems. On this account, this work proposes a novel generalized class-specific extreme learning machine (GCS-ELM), the extension of our recently proposed, class-specific extreme learning machine (CS-ELM) to address the multiclass imbalanced problems more effectively. The proposed GCS-ELM can be applied directly to the multiclass imbalance problems. The proposed method also has reduced computational cost compared to the weighted extreme learning machine (WELM) for multiclass imbalance problems. The proposed method uses class-specific regularization coefficients, which are computed by employing class distribution. The proposed method has lower computational overhead compared to the class-specific cost regulation extreme learning machine (CCR-ELM). The proposed work is assessed by using benchmark real-world imbalanced datasets downloaded from the well-known KEEL dataset repository and synthetic datasets. The experimental results, supported by the extensive statistical analysis, demonstrate that GCS-ELM is capable to improve the generalization performance for multiclass imbalanced classification problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(2), 513–529 (2012)CrossRef Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(2), 513–529 (2012)CrossRef
2.
Zurück zum Zitat He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef
3.
Zurück zum Zitat Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)CrossRef Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)CrossRef
4.
Zurück zum Zitat Das, S., Datta, S., Chaudhuri, B.B.: Handling data irregularities in classification: foundations, trends, and future challenges. Pattern Recognit. 81, 674–693 (2018)CrossRef Das, S., Datta, S., Chaudhuri, B.B.: Handling data irregularities in classification: foundations, trends, and future challenges. Pattern Recognit. 81, 674–693 (2018)CrossRef
5.
Zurück zum Zitat Parvin, H., Minaei-Bidgoli, B., Alizadeh, H.: Detection of cancer patients using an innovative method for learning at imbalanced datasets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) Rough Sets and Knowledge Technology, pp. 376–381. Springer, Berlin (2011)CrossRef Parvin, H., Minaei-Bidgoli, B., Alizadeh, H.: Detection of cancer patients using an innovative method for learning at imbalanced datasets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) Rough Sets and Knowledge Technology, pp. 376–381. Springer, Berlin (2011)CrossRef
6.
Zurück zum Zitat Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30(2), 195–215 (1998)CrossRef Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30(2), 195–215 (1998)CrossRef
7.
Zurück zum Zitat Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)CrossRef Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)CrossRef
8.
Zurück zum Zitat Krawczyk, B., Galar, M., Jele, L., Herrera, F.: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38(C), 714–726 (2016)CrossRef Krawczyk, B., Galar, M., Jele, L., Herrera, F.: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38(C), 714–726 (2016)CrossRef
9.
Zurück zum Zitat Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)CrossRef Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)CrossRef
10.
Zurück zum Zitat Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B (Cybern.) 39(2), 539–550 (2009)CrossRef Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B (Cybern.) 39(2), 539–550 (2009)CrossRef
11.
Zurück zum Zitat Krawczyk, B., Koziarski, M., Woźniak, M.: Radial-based oversampling for multiclass imbalanced data classification. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2818–2831 (2020)MathSciNetCrossRef Krawczyk, B., Koziarski, M., Woźniak, M.: Radial-based oversampling for multiclass imbalanced data classification. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2818–2831 (2020)MathSciNetCrossRef
12.
Zurück zum Zitat Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)MATH Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)MATH
13.
Zurück zum Zitat He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008) He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)
14.
Zurück zum Zitat Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Huang, D.S., Zhang, X.P., Huang, G.B. (eds.) Advances in Intelligent Computing, pp. 878–887. Springer, Berlin (2005)CrossRef Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Huang, D.S., Zhang, X.P., Huang, G.B. (eds.) Advances in Intelligent Computing, pp. 878–887. Springer, Berlin (2005)CrossRef
15.
Zurück zum Zitat Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)CrossRef Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)CrossRef
16.
Zurück zum Zitat Lin, M., Tang, K., Yao, X.: Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 647–660 (2013)CrossRef Lin, M., Tang, K., Yao, X.: Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 647–660 (2013)CrossRef
17.
Zurück zum Zitat Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: Svms modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. B (Cybern.) 39(1), 281–288 (2009)CrossRef Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: Svms modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. B (Cybern.) 39(1), 281–288 (2009)CrossRef
18.
Zurück zum Zitat Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees are robust and skew-insensitive. Data Min. Knowl. Disc. 24(1), 136–158 (2012)MathSciNetMATHCrossRef Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees are robust and skew-insensitive. Data Min. Knowl. Disc. 24(1), 136–158 (2012)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)MATHCrossRef Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)MATHCrossRef
20.
Zurück zum Zitat Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)CrossRef Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)CrossRef
21.
Zurück zum Zitat Yang, X., Song, Q., Wang, Y.: A weighted support vector machine for data classification. Int. J. Pattern Recognit. Artif. Intell. 21(05), 961–976 (2007)CrossRef Yang, X., Song, Q., Wang, Y.: A weighted support vector machine for data classification. Int. J. Pattern Recognit. Artif. Intell. 21(05), 961–976 (2007)CrossRef
22.
Zurück zum Zitat Lim, P., Goh, C.K., Tan, K.C.: Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning. IEEE Trans. Cybern. 47(9), 2850–2861 (2017)CrossRef Lim, P., Goh, C.K., Tan, K.C.: Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning. IEEE Trans. Cybern. 47(9), 2850–2861 (2017)CrossRef
23.
Zurück zum Zitat Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(4), 1119–1130 (2012)CrossRef Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(4), 1119–1130 (2012)CrossRef
24.
Zurück zum Zitat Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28(1), 238–251 (2016)CrossRef Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28(1), 238–251 (2016)CrossRef
25.
Zurück zum Zitat Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57, 164–178 (2016)CrossRef Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57, 164–178 (2016)CrossRef
26.
27.
Zurück zum Zitat Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44(8), 1761–1776 (2011)CrossRef Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44(8), 1761–1776 (2011)CrossRef
28.
Zurück zum Zitat Sen, A., Islam, M.M., Murase, K., Yao, X.: Binarization with boosting and oversampling for multiclass classification. IEEE Trans. Cybern. 46(5), 1078–1091 (2016)CrossRef Sen, A., Islam, M.M., Murase, K., Yao, X.: Binarization with boosting and oversampling for multiclass classification. IEEE Trans. Cybern. 46(5), 1078–1091 (2016)CrossRef
29.
Zurück zum Zitat Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRef Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRef
30.
Zurück zum Zitat Janakiraman, V.M., Nguyen, X., Sterniak, J., Assanis, D.: Identification of the dynamic operating envelope of hcci engines using class imbalance learning. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 98–112 (2015)MathSciNetCrossRef Janakiraman, V.M., Nguyen, X., Sterniak, J., Assanis, D.: Identification of the dynamic operating envelope of hcci engines using class imbalance learning. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 98–112 (2015)MathSciNetCrossRef
31.
Zurück zum Zitat Janakiraman, V.M., Nguyen, X., Assanis, D.: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines. Neurocomputing 177, 304–316 (2016)CrossRef Janakiraman, V.M., Nguyen, X., Assanis, D.: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines. Neurocomputing 177, 304–316 (2016)CrossRef
32.
Zurück zum Zitat Li, K., Kong, X., Lu, Z., Wenyin, L., Yin, J.: Boosting weighted ELM for imbalanced learning. Neurocomputing 128, 15–21 (2014)CrossRef Li, K., Kong, X., Lu, Z., Wenyin, L., Yin, J.: Boosting weighted ELM for imbalanced learning. Neurocomputing 128, 15–21 (2014)CrossRef
33.
Zurück zum Zitat Xiao, W., Zhang, J., Li, Y., Zhang, S., Yang, W.: Class-specific cost regulation extreme learning machine for imbalanced classification. Neurocomputing 261, 70–82 (2017)CrossRef Xiao, W., Zhang, J., Li, Y., Zhang, S., Yang, W.: Class-specific cost regulation extreme learning machine for imbalanced classification. Neurocomputing 261, 70–82 (2017)CrossRef
34.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning. Eng. Appl. Artif. Intell. 74, 252–270 (2018)CrossRef Raghuwanshi, B.S., Shukla, S.: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning. Eng. Appl. Artif. Intell. 74, 252–270 (2018)CrossRef
35.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning. Expert Syst. Appl. 121, 244–255 (2019)CrossRef Raghuwanshi, B.S., Shukla, S.: Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning. Expert Syst. Appl. 121, 244–255 (2019)CrossRef
36.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Class imbalance learning using underbagging based kernelized extreme learning machine. Neurocomputing 329, 172–187 (2019)CrossRef Raghuwanshi, B.S., Shukla, S.: Class imbalance learning using underbagging based kernelized extreme learning machine. Neurocomputing 329, 172–187 (2019)CrossRef
37.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Class-specific cost-sensitive boosting weighted elm for class imbalance learning. Memet. Comput. 11(3), 263–283 (2019)CrossRef Raghuwanshi, B.S., Shukla, S.: Class-specific cost-sensitive boosting weighted elm for class imbalance learning. Memet. Comput. 11(3), 263–283 (2019)CrossRef
38.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Classifying imbalanced data using balance cascade-based kernelized extreme learning machine. Pattern Anal. Appl. 23(3), 1157–1182 (2020)MathSciNetCrossRef Raghuwanshi, B.S., Shukla, S.: Classifying imbalanced data using balance cascade-based kernelized extreme learning machine. Pattern Anal. Appl. 23(3), 1157–1182 (2020)MathSciNetCrossRef
39.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Classifying imbalanced data using ensemble of reduced kernelized weighted extreme learning machine. Int. J. Mach. Learn. Cybern. 10(11), 3071–3097 (2019)CrossRef Raghuwanshi, B.S., Shukla, S.: Classifying imbalanced data using ensemble of reduced kernelized weighted extreme learning machine. Int. J. Mach. Learn. Cybern. 10(11), 3071–3097 (2019)CrossRef
40.
Zurück zum Zitat Shukla, S., Raghuwanshi, B.S.: Online sequential class-specific extreme learning machine for binary imbalanced learning. Neural Netw. 119, 235–248 (2019)CrossRef Shukla, S., Raghuwanshi, B.S.: Online sequential class-specific extreme learning machine for binary imbalanced learning. Neural Netw. 119, 235–248 (2019)CrossRef
41.
Zurück zum Zitat He, H., Ma, Y.: Class Imbalance Learning Methods for Support Vector Machines, p. 216. Wiley, Hoboken (2013) He, H., Ma, Y.: Class Imbalance Learning Methods for Support Vector Machines, p. 216. Wiley, Hoboken (2013)
42.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Class-specific extreme learning machine for handling binary class imbalance problem. Neural Netw. 105, 206–217 (2018)MATHCrossRef Raghuwanshi, B.S., Shukla, S.: Class-specific extreme learning machine for handling binary class imbalance problem. Neural Netw. 105, 206–217 (2018)MATHCrossRef
43.
Zurück zum Zitat Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80–86 (2000)MATHCrossRef Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80–86 (2000)MATHCrossRef
44.
Zurück zum Zitat Raghuwanshi, B.S., Shukla, S.: Class-specific kernelized extreme learning machine for binary class imbalance learning. Appl. Soft Comput. 73, 1026–1038 (2018)MATHCrossRef Raghuwanshi, B.S., Shukla, S.: Class-specific kernelized extreme learning machine for binary class imbalance learning. Appl. Soft Comput. 73, 1026–1038 (2018)MATHCrossRef
45.
Zurück zum Zitat Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRef Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRef
46.
Zurück zum Zitat Macià, N., Bernadó-Mansilla, E., Orriols-Puig, A., Ho, T.K.: Learner excellence biased by data set selection: a case for data characterisation and artificial data sets. Pattern Recognit. 46(3), 1054–1066 (2013)CrossRef Macià, N., Bernadó-Mansilla, E., Orriols-Puig, A., Ho, T.K.: Learner excellence biased by data set selection: a case for data characterisation and artificial data sets. Pattern Recognit. 46(3), 1054–1066 (2013)CrossRef
47.
Zurück zum Zitat Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)CrossRef Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)CrossRef
48.
Zurück zum Zitat Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 17(2–3), 255–287 (2011) Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 17(2–3), 255–287 (2011)
50.
Zurück zum Zitat Yuan, X., Xie, L., Abouelenien, M.: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognit. 77, 160–172 (2018)CrossRef Yuan, X., Xie, L., Abouelenien, M.: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognit. 77, 160–172 (2018)CrossRef
51.
Zurück zum Zitat Kubat, M., Holte, R., Matwin, S.: Learning when negative examples abound. In: van Someren, M., Widmer, G. (eds.) Machine Learning: ECML-97, pp. 146–153. Springer, Berlin (1997)CrossRef Kubat, M., Holte, R., Matwin, S.: Learning when negative examples abound. In: van Someren, M., Widmer, G. (eds.) Machine Learning: ECML-97, pp. 146–153. Springer, Berlin (1997)CrossRef
52.
Zurück zum Zitat Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)CrossRef Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)CrossRef
53.
Zurück zum Zitat Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30(1), 27–38 (2009)CrossRef Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30(1), 27–38 (2009)CrossRef
54.
Zurück zum Zitat Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)MATHCrossRef Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)MATHCrossRef
55.
Zurück zum Zitat Tang, K., Wang, R., Chen, T.: Towards maximizing the area under the roc curve for multi-class classification problems. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, pp. 483–488 (2011) Tang, K., Wang, R., Chen, T.: Towards maximizing the area under the roc curve for multi-class classification problems. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, pp. 483–488 (2011)
56.
Zurück zum Zitat Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A.: Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)CrossRef Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A.: Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)CrossRef
57.
Zurück zum Zitat Mathew, J., Pang, C.K., Luo, M., Leong, W.H.: Classification of imbalanced data by oversampling in kernel space of support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4065–4076 (2018)CrossRef Mathew, J., Pang, C.K., Luo, M., Leong, W.H.: Classification of imbalanced data by oversampling in kernel space of support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4065–4076 (2018)CrossRef
58.
Zurück zum Zitat Nanni, L., Fantozzi, C., Lazzarini, N.: Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158(C), 48–61 (2015)CrossRef Nanni, L., Fantozzi, C., Lazzarini, N.: Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158(C), 48–61 (2015)CrossRef
59.
Zurück zum Zitat Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A.: A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44(8), 1821–1833 (2011)MATHCrossRef Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A.: A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44(8), 1821–1833 (2011)MATHCrossRef
60.
Zurück zum Zitat Datta, S., Das, S.: Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Netw. 70, 39–52 (2015)MATHCrossRef Datta, S., Das, S.: Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Netw. 70, 39–52 (2015)MATHCrossRef
61.
Zurück zum Zitat Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 324–331 (2009) Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 324–331 (2009)
62.
Zurück zum Zitat Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH
64.
Zurück zum Zitat Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46(12), 3460–3471 (2013)CrossRef Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46(12), 3460–3471 (2013)CrossRef
Metadaten
Titel
Classifying multiclass imbalanced data using generalized class-specific extreme learning machine
verfasst von
Bhagat Singh Raghuwanshi
Sanyam Shukla
Publikationsdatum
04.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Progress in Artificial Intelligence / Ausgabe 3/2021
Print ISSN: 2192-6352
Elektronische ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-021-00236-4

Weitere Artikel der Ausgabe 3/2021

Progress in Artificial Intelligence 3/2021 Zur Ausgabe