Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2016 | Original Article | Ausgabe 3-4/2016 Open Access

International Journal of Data Science and Analytics 3-4/2016

Classifying spatial trajectories using representation learning

Zeitschrift:
International Journal of Data Science and Analytics > Ausgabe 3-4/2016
Autoren:
Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, Jotaro Ikedo
Wichtige Hinweise
This paper is an extension version of the PAKDD2016 Long Presentation paper “Deep Feature Extraction from Trajectories for Transportation Mode Estimation” [5].

Abstract

This paper addresses the problem of feature extraction for estimating users’ transportation modes from their movement trajectories. Previous studies have adopted supervised learning approaches and used engineers’ skills to find effective features for accurate estimation. However, such handcrafted features cannot always work well because human behaviors are diverse and trajectories include noise due to measurement error. To compensate for the shortcomings of handcrafted features, we propose a method that automatically extracts additional features using a deep neural network (DNN). In order that a DNN can easily handle input trajectories, our method converts a raw trajectory data structure into an image data structure while maintaining effective spatiotemporal information. A classification model is constructed in a supervised manner using both of the deep features and handcrafted features. We demonstrate the effectiveness of the proposed method through several experiments using two real datasets, such as accuracy comparisons with previous methods and feature visualization.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3-4/2016

International Journal of Data Science and Analytics 3-4/2016 Zur Ausgabe

Premium Partner

    Bildnachweise