Skip to main content
Erschienen in: Neuroinformatics 1/2015

01.01.2015 | Original Article

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

verfasst von: Mert R. Sabuncu, Ender Konukoglu, for the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Neuroinformatics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed (https://​www.​nmr.​mgh.​harvard.​edu/​lab/​mripredict), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
http://fcon_1000.projects.nitrc.org/indi/adhd200/general/ADHD-200_PhenotypicKey.pdf.
 
Literatur
Zurück zum Zitat Ashburner, J., & Friston, K. J. (2000). VVoxel-based morphometry: the methods. NeuroImage, 11, 805–821. Ashburner, J., & Friston, K. J. (2000). VVoxel-based morphometry: the methods. NeuroImage, 11, 805–821.
Zurück zum Zitat Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging. Springer, pp. 423–434. Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging. Springer, pp. 423–434.
Zurück zum Zitat Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300. Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300.
Zurück zum Zitat Brown, M.R., Sidhu, G.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., Greenshaw, A.J., Dursun, S.M. (2012). ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in systems neuroscience 6. Brown, M.R., Sidhu, G.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., Greenshaw, A.J., Dursun, S.M. (2012). ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in systems neuroscience 6.
Zurück zum Zitat Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27.
Zurück zum Zitat Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59, 2217–2230.PubMedCrossRef Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59, 2217–2230.PubMedCrossRef
Zurück zum Zitat Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.PubMedCrossRef Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.PubMedCrossRef
Zurück zum Zitat Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
Zurück zum Zitat Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS One, 4, e6353.PubMedCentralPubMedCrossRef Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS One, 4, e6353.PubMedCentralPubMedCrossRef
Zurück zum Zitat Criminisi, A., Shotton, J., Konukoglu, E., (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5, 12. Criminisi, A., Shotton, J., Konukoglu, E., (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5, 12.
Zurück zum Zitat Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56, 766–781.PubMedCrossRef Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56, 766–781.PubMedCrossRef
Zurück zum Zitat Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.PubMedCrossRef Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.PubMedCrossRef
Zurück zum Zitat Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41, 1220–1227.PubMedCentralPubMedCrossRef Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41, 1220–1227.PubMedCentralPubMedCrossRef
Zurück zum Zitat Davatzikos, C., Xu, F., An, Y., Fan, Y., & Resnick, S. M. (2009). Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain, 132, 2026–2035.PubMedCentralPubMedCrossRef Davatzikos, C., Xu, F., An, Y., Fan, Y., & Resnick, S. M. (2009). Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain, 132, 2026–2035.PubMedCentralPubMedCrossRef
Zurück zum Zitat DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.
Zurück zum Zitat Duchesnay, E., Cachia, A., Roche, A., Rivière, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., & Mangin, J. F. (2007). Classification based on cortical folding patterns. Medical Imaging, IEEE Transactions, 26(4), 553–565. Duchesnay, E., Cachia, A., Roche, A., Rivière, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., & Mangin, J. F. (2007). Classification based on cortical folding patterns. Medical Imaging, IEEE Transactions, 26(4), 553–565.
Zurück zum Zitat Duchesne, S., Rolland, Y., & Verin, M. (2009). Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology, 16, 61–70.PubMedCrossRef Duchesne, S., Rolland, Y., & Verin, M. (2009). Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology, 16, 61–70.PubMedCrossRef
Zurück zum Zitat Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., & Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage, 49, 44–56.PubMedCrossRef Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., & Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage, 49, 44–56.PubMedCrossRef
Zurück zum Zitat Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007). COMPARE: classification of morphological patterns using adaptive regional elements. Medical Imaging, IEEE Transactions, 26, 93–105.CrossRef Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007). COMPARE: classification of morphological patterns using adaptive regional elements. Medical Imaging, IEEE Transactions, 26, 93–105.CrossRef
Zurück zum Zitat Feinstein, A., Roy, P., Lobaugh, N., Feinstein, K., O’Connor, P., & Black, S. (2004). Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology, 62(4), 586–590. Feinstein, A., Roy, P., Lobaugh, N., Feinstein, K., O’Connor, P., & Black, S. (2004). Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology, 62(4), 586–590.
Zurück zum Zitat Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.PubMedCrossRef Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.PubMedCrossRef
Zurück zum Zitat Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.PubMedCrossRef Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.PubMedCrossRef
Zurück zum Zitat Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef
Zurück zum Zitat Fischl, B., van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D. & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22. Fischl, B., van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D. & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.
Zurück zum Zitat Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6, 67–77.PubMedCentralPubMedCrossRef Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6, 67–77.PubMedCentralPubMedCrossRef
Zurück zum Zitat Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. Ä., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.CrossRef Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. Ä., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.CrossRef
Zurück zum Zitat Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., & Ashburner, J. (2008). Bayesian decoding of brain images. NeuroImage, 39, 181–205.PubMedCrossRef Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., & Ashburner, J. (2008). Bayesian decoding of brain images. NeuroImage, 39, 181–205.PubMedCrossRef
Zurück zum Zitat Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.PubMedCentralPubMedCrossRef Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.PubMedCentralPubMedCrossRef
Zurück zum Zitat Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., Clark, V.P., Turner, J.A., Mueller, B.A., Magnotta, V. (2013). The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia. Neuroinformatics, 1–22. Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., Clark, V.P., Turner, J.A., Mueller, B.A., Magnotta, V. (2013). The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia. Neuroinformatics, 1–22.
Zurück zum Zitat Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.
Zurück zum Zitat Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.PubMedCrossRef Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.PubMedCrossRef
Zurück zum Zitat Ho, B.-C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585.PubMedCrossRef Ho, B.-C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585.PubMedCrossRef
Zurück zum Zitat Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J. L., & Ward, C. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.PubMedCentralPubMedCrossRef Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J. L., & Ward, C. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.PubMedCentralPubMedCrossRef
Zurück zum Zitat Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.CrossRef Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.CrossRef
Zurück zum Zitat Japkowicz, N., Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press. Japkowicz, N., Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press.
Zurück zum Zitat Kawasaki, Y., Suzuki, M., Kherif, F., Takahashi, T., Zhou, S.-Y., Nakamura, K., Matsui, M., Sumiyoshi, T., Seto, H., & Kurachi, M. (2007). Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage, 34, 235–242.PubMedCrossRef Kawasaki, Y., Suzuki, M., Kherif, F., Takahashi, T., Zhou, S.-Y., Nakamura, K., Matsui, M., Sumiyoshi, T., Seto, H., & Kurachi, M. (2007). Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage, 34, 235–242.PubMedCrossRef
Zurück zum Zitat Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack, C. R., Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131, 681–689.PubMedCentralPubMedCrossRef Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack, C. R., Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131, 681–689.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kloppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., & Frackowiak, R. (2009). Automatic detection of preclinical neurodegeneration Presymptomatic Huntington disease. Neurology, 72, 426–431.PubMedCentralPubMedCrossRef Kloppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., & Frackowiak, R. (2009). Automatic detection of preclinical neurodegeneration Presymptomatic Huntington disease. Neurology, 72, 426–431.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kloppel, S., Abdulkadir, A., Jack, C. R., Jr., Koutsouleris, N., Mour√£o-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61, 457–463.PubMedCentralPubMedCrossRef Kloppel, S., Abdulkadir, A., Jack, C. R., Jr., Koutsouleris, N., Mour√£o-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61, 457–463.PubMedCentralPubMedCrossRef
Zurück zum Zitat Konukoglu, E., Glocker, B., Zikic, D., & Criminisi, A., (2013). Neighbourhood Approximation using randomized forests. Medical Image Analysis 17(7), 790–804. Konukoglu, E., Glocker, B., Zikic, D., & Criminisi, A., (2013). Neighbourhood Approximation using randomized forests. Medical Image Analysis 17(7), 790–804.
Zurück zum Zitat Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., & Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700.PubMedCentralPubMedCrossRef Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., & Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCentralPubMedCrossRef Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21, 46–57.PubMedCrossRef Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21, 46–57.PubMedCrossRef
Zurück zum Zitat Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.PubMedCrossRef Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.PubMedCrossRef
Zurück zum Zitat Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., & Liu, Z. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7, e40968.PubMedCentralPubMedCrossRef Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., & Liu, Z. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7, e40968.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lockhart, R., Taylor, J., Tibshirani, R.J., Tibshirani, R., 2012. A significance test for the lasso. Lockhart, R., Taylor, J., Tibshirani, R.J., Tibshirani, R., 2012. A significance test for the lasso.
Zurück zum Zitat MacKay, D. J. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 720–736.CrossRef MacKay, D. J. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 720–736.CrossRef
Zurück zum Zitat Marcus, D. S., Olsen, T. R., Ramaratnam, M., & Buckner, R. L. (2007a). The extensible neuroimaging archive toolkit. Neuroinformatics, 5, 11–33.PubMed Marcus, D. S., Olsen, T. R., Ramaratnam, M., & Buckner, R. L. (2007a). The extensible neuroimaging archive toolkit. Neuroinformatics, 5, 11–33.PubMed
Zurück zum Zitat Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007b). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.PubMedCrossRef Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007b). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.PubMedCrossRef
Zurück zum Zitat Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 72, 417–473.CrossRef Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 72, 417–473.CrossRef
Zurück zum Zitat Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62. Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62.
Zurück zum Zitat Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.CrossRef Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.CrossRef
Zurück zum Zitat Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 980–995.PubMedCrossRef Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 980–995.PubMedCrossRef
Zurück zum Zitat Mourao-Miranda, J., Reinders, A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K., Fearon, P., Jones, P., & Doody, G. (2012). Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 42, 1037.PubMedCentralPubMedCrossRef Mourao-Miranda, J., Reinders, A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K., Fearon, P., Jones, P., & Doody, G. (2012). Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 42, 1037.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mwangi, B., Matthews, K., & Steele, J. D. (2012). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.PubMedCrossRef Mwangi, B., Matthews, K., & Steele, J. D. (2012). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.PubMedCrossRef
Zurück zum Zitat Nie, K., Chen, J.-H., Yu, H. J., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Academic Radiology, 15, 1513–1525.PubMedCentralPubMedCrossRef Nie, K., Chen, J.-H., Yu, H. J., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Academic Radiology, 15, 1513–1525.PubMedCentralPubMedCrossRef
Zurück zum Zitat Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in human neuroscience 7. Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in human neuroscience 7.
Zurück zum Zitat Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61, 606–612.PubMedCrossRef Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61, 606–612.PubMedCrossRef
Zurück zum Zitat Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, 56, 809–813.PubMedCrossRef Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, 56, 809–813.PubMedCrossRef
Zurück zum Zitat Parker, B. J., Günter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8(1), 326. Parker, B. J., Günter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8(1), 326.
Zurück zum Zitat Pereira, F., Botvinick, M., (2011). Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 940–946. Pereira, F., Botvinick, M., (2011). Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 940–946.
Zurück zum Zitat Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303.PubMedCrossRef Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303.PubMedCrossRef
Zurück zum Zitat Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174. Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174.
Zurück zum Zitat Rondina, J., Hahn, T., de Oliveira, L., Marquand, A., Dresler, T., Leitner, T., Fallgatter, A., Shawe-Taylor, J., Mourao-Miranda, J. (2013). SCoRS-a method based on stability for feature selection and mapping in neuroimaging. Rondina, J., Hahn, T., de Oliveira, L., Marquand, A., Dresler, T., Leitner, T., Fallgatter, A., Shawe-Taylor, J., Mourao-Miranda, J. (2013). SCoRS-a method based on stability for feature selection and mapping in neuroimaging.
Zurück zum Zitat Sabuncu, M. R., Van Leemput, K. (2012). The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging, IEEE Transactions on Medical Imaging, 31(12), 2290–2306. Sabuncu, M. R., Van Leemput, K. (2012). The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging, IEEE Transactions on Medical Imaging, 31(12), 2290–2306.
Zurück zum Zitat Saeys, Y., Inza, I. a., & Larra√±aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.PubMedCrossRef Saeys, Y., Inza, I. a., & Larra√±aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.PubMedCrossRef
Zurück zum Zitat Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299–306.PubMedCrossRef Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299–306.PubMedCrossRef
Zurück zum Zitat Scholkopf, B., Smola, A.J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. the MIT Press. Scholkopf, B., Smola, A.J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. the MIT Press.
Zurück zum Zitat Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., King, M., Wang, R., Roberts, J., Turner, J.A., Calhoun, V.D., 2011. COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in neuroinformatics 5. Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., King, M., Wang, R., Roberts, J., Turner, J.A., Calhoun, V.D., 2011. COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in neuroinformatics 5.
Zurück zum Zitat Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMedCrossRef Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2008). POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors. Bioinformatics, 24(13), i6–i14. Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2008). POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors. Bioinformatics, 24(13), i6–i14.
Zurück zum Zitat Soriano-Mas, C., Pujol, J., Alonso, P., Cardoner, N., Menchon, J. M., Harrison, B. J., Deus, J., Vallejo, J., & Gaser, C. (2007). Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage, 35, 1028–1037.PubMedCrossRef Soriano-Mas, C., Pujol, J., Alonso, P., Cardoner, N., Menchon, J. M., Harrison, B. J., Deus, J., Vallejo, J., & Gaser, C. (2007). Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage, 35, 1028–1037.PubMedCrossRef
Zurück zum Zitat Stonnington, C. M., Chu, C., Kl√∂ppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.PubMedCentralPubMedCrossRef Stonnington, C. M., Chu, C., Kl√∂ppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.PubMedCentralPubMedCrossRef
Zurück zum Zitat Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.PubMedCentralPubMedCrossRef Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.PubMedCentralPubMedCrossRef
Zurück zum Zitat Teipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., M√∂ller, H.-J. R., & Hampel, H. (2007). Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage, 38, 13–24.PubMedCrossRef Teipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., M√∂ller, H.-J. R., & Hampel, H. (2007). Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage, 38, 13–24.PubMedCrossRef
Zurück zum Zitat Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244. Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.
Zurück zum Zitat Vemuri, P., Whitwell, J. L., Kantarci, K., Josephs, K. A., Parisi, J. E., Shiung, M. S., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Dickson, D. W. (2008). Antemortem MRI based Structural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage. NeuroImage, 42, 559–567.PubMedCentralPubMedCrossRef Vemuri, P., Whitwell, J. L., Kantarci, K., Josephs, K. A., Parisi, J. E., Shiung, M. S., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Dickson, D. W. (2008). Antemortem MRI based Structural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage. NeuroImage, 42, 559–567.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wang, X., Yang, J., Jensen, R., & Liu, X. (2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine, 83, 147–156.PubMedCrossRef Wang, X., Yang, J., Jensen, R., & Liu, X. (2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine, 83, 147–156.PubMedCrossRef
Zurück zum Zitat Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.PubMedCentralPubMedCrossRef Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE, pp. 557–562. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE, pp. 557–562.
Zurück zum Zitat Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J., Tunnard, C., Liu, Y., Collins, L., Evans, A., Mecocci, P., & Vellas, B. (2011). Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. NeuroImage, 54, 1178–1187.PubMedCrossRef Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J., Tunnard, C., Liu, Y., Collins, L., Evans, A., Mecocci, P., & Vellas, B. (2011). Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. NeuroImage, 54, 1178–1187.PubMedCrossRef
Zurück zum Zitat Wilson, S. M., Ogar, J. M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B. L., Weiner, M. W., & Gorno-Tempini, M. L. (2009). Automated MRI-based classification of primary progressive aphasia variants. NeuroImage, 47, 1558–1567.PubMedCentralPubMedCrossRef Wilson, S. M., Ogar, J. M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B. L., Weiner, M. W., & Gorno-Tempini, M. L. (2009). Automated MRI-based classification of primary progressive aphasia variants. NeuroImage, 47, 1558–1567.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wolfe, D.A., Hollander, M., 1973. Nonparametric statistical methods. Nonparametric statistical methods. Wolfe, D.A., Hollander, M., 1973. Nonparametric statistical methods. Nonparametric statistical methods.
Zurück zum Zitat Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg. Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg.
Metadaten
Titel
Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study
verfasst von
Mert R. Sabuncu
Ender Konukoglu
for the Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 1/2015
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-014-9238-1

Weitere Artikel der Ausgabe 1/2015

Neuroinformatics 1/2015 Zur Ausgabe