Skip to main content

2019 | OriginalPaper | Buchkapitel

Clinical Trial Designs to Evaluate Predictive Biomarkers: What’s Being Estimated?

verfasst von : Gene Pennello, Jingjing Ye

Erschienen in: Pharmaceutical Statistics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predictive biomarkers are used to predict whether a patient is likely to receive benefits from a therapy that outweigh its risks. In practice, a predictive biomarker is measured with a diagnostic assay or test kit. Usually the test has some potential for measuring the biomarker with error. For qualitative tests indicating presence or absence of a biomarker, the probability of misclassification is usually not zero. Study designs to evaluate predictive biomarkers include the biomarker-stratified design, the biomarker-strategy design, the enrichment (or targeted) design, and the discordant risk randomization design. Many authors have reviewed the main strengths and weaknesses of these study designs. However, the estimand being used to evaluate the performance of the predictive biomarker is usually not provided explicitly. In this chapter, we provide explicit formulas for the estimands used in common study designs assuming that the misclassification error of the biomarker test is non-differential to outcome. The estimands are expressed as terms of the biomarker’s predictive capacity (differential in treatment effect between biomarker positive and negative patients when the biomarker is never misclassified) and the test’s predictive accuracy (e.g., positive and negative predictive values of the test for the biomarker). Upon inspection, the estimands reveal not only well-known strengths and weaknesses of the study designs, but other insights. In particular, for the biomarker-stratified design, the estimand is the product of the biomarker predictive capacity and an attenuation factor between 0 and 1 that increases with the test’s predictive accuracy. For other designs, the estimands illuminate important limitations in evaluating the clinical utility of the biomarker test. After presenting the theoretical estimands, we present and discuss estimand values for a hypothetical case study of Procalcitonin (PCT) as a biomarker in Procalcitonin-guided evaluation and management of subjects suspected of lower respiratory tract infection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat US FDA-NIH Biomarker Working Group: BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US) (2016) US FDA-NIH Biomarker Working Group: BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US) (2016)
2.
Zurück zum Zitat Us, F.D.A.: Principles for codevelopment of an in vitro companion diagnostic device with a therapeutic product. Silver Spring MD, US FDA (2016) Us, F.D.A.: Principles for codevelopment of an in vitro companion diagnostic device with a therapeutic product. Silver Spring MD, US FDA (2016)
4.
Zurück zum Zitat US FDA: Guidance on enrichment strategies for clinical trials to support approval of human drugs and biological products. US FDA: Silver Spring, MD, 2012. US FDA. In Vitro Companion Diagnostic Devices, US FDA: Silver Spring MD (2014) US FDA: Guidance on enrichment strategies for clinical trials to support approval of human drugs and biological products. US FDA: Silver Spring, MD, 2012. US FDA. In Vitro Companion Diagnostic Devices, US FDA: Silver Spring MD (2014)
5.
Zurück zum Zitat Us, F.D.A.: Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product. Silver Spring MD, US FDA (2016) Us, F.D.A.: Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product. Silver Spring MD, US FDA (2016)
6.
Zurück zum Zitat Beaver, J.A., Tzou, A., Blumenthal, G.M., McKee, A.E., Kim, G., Pazdur, R., Philip, R.: An FDA perspective on the regulatory implications of complex signatures to predict response to targeted therapies. Clin. Cancer Res. 23(6), 1368–1372 (2017)CrossRef Beaver, J.A., Tzou, A., Blumenthal, G.M., McKee, A.E., Kim, G., Pazdur, R., Philip, R.: An FDA perspective on the regulatory implications of complex signatures to predict response to targeted therapies. Clin. Cancer Res. 23(6), 1368–1372 (2017)CrossRef
7.
Zurück zum Zitat Polley, M.C., Freidlin, B., Korn, E.L., Conley, B.A., Abrams, J.S., McShane, L.M.: Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl. Cancer Inst. 105, 1677–1683 (2013)CrossRef Polley, M.C., Freidlin, B., Korn, E.L., Conley, B.A., Abrams, J.S., McShane, L.M.: Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl. Cancer Inst. 105, 1677–1683 (2013)CrossRef
8.
Zurück zum Zitat Buyse, M., Michiels, S., Sargent, D.J., Grothey, A., Matheson, A., de Gramont, A.: Integrating biomarkers in clinical trials. Expert Rev. Mol. Diagn. 11(2), 171–182 (2011)CrossRef Buyse, M., Michiels, S., Sargent, D.J., Grothey, A., Matheson, A., de Gramont, A.: Integrating biomarkers in clinical trials. Expert Rev. Mol. Diagn. 11(2), 171–182 (2011)CrossRef
9.
Zurück zum Zitat Baker, S.G., Kramer, B.S., Sargent, D.J., Bonetti, M.: Biomarkers, subgroup evaluation, and clinical trial design. Discov. Med. 13(70), 187–192 (2012) Baker, S.G., Kramer, B.S., Sargent, D.J., Bonetti, M.: Biomarkers, subgroup evaluation, and clinical trial design. Discov. Med. 13(70), 187–192 (2012)
10.
Zurück zum Zitat Freidlin, B., McShane, L.M., Korn, E.L.: Randomized clinical trials with biomarkers: design issues. J. Natl. Cancer I. 102(3), 152–160 (2010)CrossRef Freidlin, B., McShane, L.M., Korn, E.L.: Randomized clinical trials with biomarkers: design issues. J. Natl. Cancer I. 102(3), 152–160 (2010)CrossRef
11.
Zurück zum Zitat Simon, R.: Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Personalized Med. 7(1), 33–47 (2010)MathSciNetCrossRef Simon, R.: Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Personalized Med. 7(1), 33–47 (2010)MathSciNetCrossRef
12.
Zurück zum Zitat Bossuyt, P.M., Lijmer, J.G., Mol, B.W.: Randomised comparisons of medical tests: sometimes invalid, not always efficient. Lancet 356(9244), 1844–1847 (2000)CrossRef Bossuyt, P.M., Lijmer, J.G., Mol, B.W.: Randomised comparisons of medical tests: sometimes invalid, not always efficient. Lancet 356(9244), 1844–1847 (2000)CrossRef
13.
Zurück zum Zitat Mandrekar, S.J., Sargent, D.J.: Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27(24), 4027–4034 (2009)CrossRef Mandrekar, S.J., Sargent, D.J.: Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27(24), 4027–4034 (2009)CrossRef
14.
Zurück zum Zitat Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models: A Modern Perspective. Chapman Hall/CRC, Boca Raton, FL (2006)CrossRef Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models: A Modern Perspective. Chapman Hall/CRC, Boca Raton, FL (2006)CrossRef
16.
Zurück zum Zitat Simon, R.: Stratification and partial ascertainment of biomarker value in biomarker driven clinical trials. J. Biopharm. Stat. 24(5), 1011–1021 (2014)MathSciNetCrossRef Simon, R.: Stratification and partial ascertainment of biomarker value in biomarker driven clinical trials. J. Biopharm. Stat. 24(5), 1011–1021 (2014)MathSciNetCrossRef
17.
Zurück zum Zitat Buyse, M., Michiels, S.: Omics-based clinical trial designs. Curr. Opin. Oncol. 25(3), 289–295 (2013) Buyse, M., Michiels, S.: Omics-based clinical trial designs. Curr. Opin. Oncol. 25(3), 289–295 (2013)
18.
Zurück zum Zitat Simon, R., Maitournam, A.: Evaluating the efficiency of targeted designs for randomized clinical trials. Clin. Cancer Res. 10(20), 6759–6763 (2004)CrossRef Simon, R., Maitournam, A.: Evaluating the efficiency of targeted designs for randomized clinical trials. Clin. Cancer Res. 10(20), 6759–6763 (2004)CrossRef
19.
Zurück zum Zitat Pennello, G.A.: Analytical and clinical evaluation of biomarkers assays: when are biomarkers ready for prime time? Clin Trials. 10(5), 666–676 (2013)CrossRef Pennello, G.A.: Analytical and clinical evaluation of biomarkers assays: when are biomarkers ready for prime time? Clin Trials. 10(5), 666–676 (2013)CrossRef
21.
Zurück zum Zitat Sharma, A., Zhang, G., Aslam, S., Yu, K., Chee, M., Palma, J.F.: Novel approach for clinical validation of the cobas kras mutation test in advanced colorectal cancer. Mol. Diagn. Ther. 20(3), 231–240 (2016)CrossRef Sharma, A., Zhang, G., Aslam, S., Yu, K., Chee, M., Palma, J.F.: Novel approach for clinical validation of the cobas kras mutation test in advanced colorectal cancer. Mol. Diagn. Ther. 20(3), 231–240 (2016)CrossRef
22.
Zurück zum Zitat Eng, K.H.: Randomized reverse marker strategy design for prospective biomarker validation. Stat. Med. 33, 3089–3099 (2014)MathSciNetCrossRef Eng, K.H.: Randomized reverse marker strategy design for prospective biomarker validation. Stat. Med. 33, 3089–3099 (2014)MathSciNetCrossRef
23.
Zurück zum Zitat Ondra, T., Dmitrienko, A., Friede, T., Graf, A., Miller, F., Stallard, N., Posch, M.: Methods for identification and confirmation of targeted subgroups in clinical trials: a systematic review. J. Biopharm. Stat. 26(1), 99–119 (2016)CrossRef Ondra, T., Dmitrienko, A., Friede, T., Graf, A., Miller, F., Stallard, N., Posch, M.: Methods for identification and confirmation of targeted subgroups in clinical trials: a systematic review. J. Biopharm. Stat. 26(1), 99–119 (2016)CrossRef
24.
Zurück zum Zitat Kuha, J., Skinner, C., Palmgren, J.: Misclassification error. In: Armitage, P., Colton, T (eds.) Encyclopedia of Biostatistics. Wiley (2005) Kuha, J., Skinner, C., Palmgren, J.: Misclassification error. In: Armitage, P., Colton, T (eds.) Encyclopedia of Biostatistics. Wiley (2005)
Metadaten
Titel
Clinical Trial Designs to Evaluate Predictive Biomarkers: What’s Being Estimated?
verfasst von
Gene Pennello
Jingjing Ye
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-67386-8_14