Skip to main content

2024 | OriginalPaper | Buchkapitel

Cloud-Based Skin Cancer Classification: Training and Deploying a Model on AWS

verfasst von : Challa Koti Reddy, Chava Pavan Kumar, A. R. P. S. Gowtham, Rajkumar Maharaju, Rama Valupadasu

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Skin cancer has become one of the most dangerous and most common types of cancer in recent years. Skin cancers come in a variety of types, and identifying the type is crucial for treating the condition when it is still treatable. The dermatologist must also distinguish between skin conditions that affect the tissues on the top layer of the skin and cells of the skin cancer that develop in the epidermal layer of the skin. The current methods for identifying or categorizing skin cancer take a long time and can be painful for the patient due to potential side effects. There is extensive research going on in this area but the unavailability of the balanced datasets and small size of the datasets have become a hindrance. There are not many products like web applications which use deep learning models to identify and categorize the type of skin cancer. We have used the ConvNeXt Tiny deep learning model which is pre-trained on ImageNet. Once we had obtained good accuracy, we had used that model and created a web application which is hosted in the AWS Cloud. The dataset we used for our work is ISIC2018. It consists of seven classes of dermoscopic images of skin lesions which are of high resolution. It is an imbalanced data that has images collected from various clinical sites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Analytics T (2020) Deploying a custom machine learning model as REST API with AWS SageMaker. Last accessed 5 Sept 2023 Analytics T (2020) Deploying a custom machine learning model as REST API with AWS SageMaker. Last accessed 5 Sept 2023
Metadaten
Titel
Cloud-Based Skin Cancer Classification: Training and Deploying a Model on AWS
verfasst von
Challa Koti Reddy
Chava Pavan Kumar
A. R. P. S. Gowtham
Rajkumar Maharaju
Rama Valupadasu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_32