Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.11.2016 | Original Article | Ausgabe 1/2018

Neural Computing and Applications 1/2018

Cluster merging based on a decision threshold

Zeitschrift:
Neural Computing and Applications > Ausgabe 1/2018
Autoren:
Jian Hou, Boping Zhang

Abstract

Data clustering is an important unsupervised learning technique and has wide application in various fields including pattern recognition, data mining, image analysis and bioinformatics. A vast amount of clustering algorithms have been proposed in the past decades. However, existing algorithms still face many problems in practical applications. One typical problem is the parameter dependence, which means that user-specified parameters are required as input and the clustering results are influenced by these parameters. Another problem is that many algorithms are not able to generate clusters of non-spherical shapes. In this paper, a cluster merging method is proposed to solve the above-mentioned problems based on a decision threshold and the dominant sets algorithm. Firstly, the influence of similarity parameter on dominant sets clustering results is studied, and it is found that the obtained clusters become larger with the increase in similarity parameter. We analyze the reason behind this behavior and propose to generate small initial clusters in the first step and then merge the initial clusters to improve the clustering results. Specifically, we select a similarity parameter which generates small but not too small clusters. Then, we calculate pairwise merging decisions among the initial clusters and obtain a merging decision threshold. Based on this threshold, we merge the small clusters and obtain the final clustering results. Experiments on several datasets are used to validate the effectiveness of the proposed algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Neural Computing and Applications 1/2018 Zur Ausgabe

Premium Partner

    Bildnachweise