Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

04.01.2021

Clustering Based Two Dimensional Motion of Sink Node in Wireless Sensor Networks

verfasst von: Habila Basumatary, Arindam Debnath, Mrinal Kanti Deb Barma, Bidyut Kumar Bhattacharyya

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agarwal, D. P. (2017). Applications of sensor networks in embedded sensor systems, chapter 1, sec. 1 (1st ed, pp. 35–63). Singapore, Malaysia: Springer. Agarwal, D. P. (2017). Applications of sensor networks in embedded sensor systems, chapter 1, sec. 1 (1st ed, pp. 35–63). Singapore, Malaysia: Springer.
2.
Zurück zum Zitat Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management. Sensing and Bio-Sensing Research, 12, 15–29.CrossRef Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management. Sensing and Bio-Sensing Research, 12, 15–29.CrossRef
3.
Zurück zum Zitat Divya, K., Jaipriya, S., Anitha, G., Malathy, S., & Maheswar, R (2018). An energy efficient technique for time sensitive application using MC-WSN. In Proceedings of the 2nd international conference on innovative systems and control (pp. 1451–1455). Divya, K., Jaipriya, S., Anitha, G., Malathy, S., & Maheswar, R (2018). An energy efficient technique for time sensitive application using MC-WSN. In Proceedings of the 2nd international conference on innovative systems and control (pp. 1451–1455).
4.
Zurück zum Zitat Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE IoT Journal, 4(5), 1125–1142. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE IoT Journal, 4(5), 1125–1142.
5.
Zurück zum Zitat Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94, 17–29.CrossRef Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94, 17–29.CrossRef
6.
Zurück zum Zitat Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108, 121–140.CrossRef Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108, 121–140.CrossRef
7.
Zurück zum Zitat Musale, V., & Chaudhari, D (2017). Challenges, protocols and case studies in design of reliable energy efficient wireless sensor networks. In IEEE proceedings of the 4th international conference on advanced computing and communications systems (pp. 1–7) Musale, V., & Chaudhari, D (2017). Challenges, protocols and case studies in design of reliable energy efficient wireless sensor networks. In IEEE proceedings of the 4th international conference on advanced computing and communications systems (pp. 1–7)
8.
Zurück zum Zitat Sharma, S., Bansal, R. K., & Bansal, S. (2014). Issues and challenges in wireless sensor networks. In Proceedings of the international conference on machine intelligence and research advancement. Sharma, S., Bansal, R. K., & Bansal, S. (2014). Issues and challenges in wireless sensor networks. In Proceedings of the international conference on machine intelligence and research advancement.
9.
Zurück zum Zitat Magadevi, N., Kumar, V. J. S., & Suresh, A. (2018). Maximizing the network life time of wireless sensor networks using a mobile charger. Wireless Personal Communications, 102, 1029–1039.CrossRef Magadevi, N., Kumar, V. J. S., & Suresh, A. (2018). Maximizing the network life time of wireless sensor networks using a mobile charger. Wireless Personal Communications, 102, 1029–1039.CrossRef
10.
Zurück zum Zitat Heydari, R. D., & Kavand, H. (2019). Finding mobility pattern of movable target in wireless sensor networks by crowdsourcing designed mechanism. Wireless Personal Communications, 109, 963–980.CrossRef Heydari, R. D., & Kavand, H. (2019). Finding mobility pattern of movable target in wireless sensor networks by crowdsourcing designed mechanism. Wireless Personal Communications, 109, 963–980.CrossRef
11.
Zurück zum Zitat Maheswari, D. U., & Sudha, S. (2019). Node degree based energy efficient two-level clustering for wireless sensor networks. Wireless Personal Communications, 104, 1209–1225.CrossRef Maheswari, D. U., & Sudha, S. (2019). Node degree based energy efficient two-level clustering for wireless sensor networks. Wireless Personal Communications, 104, 1209–1225.CrossRef
12.
Zurück zum Zitat Hsu, H. L., & Liang, Q. (2005). An energy-efficient protocol for wireless sensor networks. In IEEE Proceedings of the 62th vehicular technology conference (pp. 2321–2325). Hsu, H. L., & Liang, Q. (2005). An energy-efficient protocol for wireless sensor networks. In IEEE Proceedings of the 62th vehicular technology conference (pp. 2321–2325).
13.
Zurück zum Zitat Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef
14.
Zurück zum Zitat Azad, P., & Sharma, P. (2014). Pareto-optimal clustering scheme using data aggregation for wireless sensor networks. International Journal of Electronics, 102(7), 1165–1176.CrossRef Azad, P., & Sharma, P. (2014). Pareto-optimal clustering scheme using data aggregation for wireless sensor networks. International Journal of Electronics, 102(7), 1165–1176.CrossRef
15.
Zurück zum Zitat Aloulou, R., Lucas De Peslouan, P.-O., Mnif, H., Alicalapa, F., Luk, L. S., & Loulou, M. (2015). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. Aloulou, R., Lucas De Peslouan, P.-O., Mnif, H., Alicalapa, F., Luk, L. S., & Loulou, M. (2015). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852.
16.
Zurück zum Zitat Ahlawat, M., & Mittal, A. (2015). Different communication protocols for wireless sensor networks: A Review. International Journal of Advanced Research in Computer and Communication Engineering, 4(3), 2319–5940. Ahlawat, M., & Mittal, A. (2015). Different communication protocols for wireless sensor networks: A Review. International Journal of Advanced Research in Computer and Communication Engineering, 4(3), 2319–5940.
17.
Zurück zum Zitat Heizelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless micro sensor networks. In IEEE proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10–20). Heizelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless micro sensor networks. In IEEE proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10–20).
18.
Zurück zum Zitat Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power efficient gathering in sensor information systems. IEEE Proceedings on Aerospace Conference, 3, 1125–1130. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power efficient gathering in sensor information systems. IEEE Proceedings on Aerospace Conference, 3, 1125–1130.
19.
Zurück zum Zitat Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104, 199–216.CrossRef Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104, 199–216.CrossRef
20.
Zurück zum Zitat Robinson, Y. H., Julie, E. G., Saravanan, K., Kumar, R., & Son, L. H. (2020). DRP: Dynamic routing protocol in wireless sensor networks. Wireless Personal Communications, 111, 313–329.CrossRef Robinson, Y. H., Julie, E. G., Saravanan, K., Kumar, R., & Son, L. H. (2020). DRP: Dynamic routing protocol in wireless sensor networks. Wireless Personal Communications, 111, 313–329.CrossRef
21.
Zurück zum Zitat Yang, F., Wu, N., Zhang, C., Zhu, Y., Su, R., Qiao, Y., & (May, . (2018). Efficient approach to cyclic scheduling of single-arm cluster tools with chamber cleaning operations and wafer residency time constraint. IEEE Transactions on SEMICONDUCTOR MANUFACTURING., 31(2), 196–205.CrossRef Yang, F., Wu, N., Zhang, C., Zhu, Y., Su, R., Qiao, Y., & (May, . (2018). Efficient approach to cyclic scheduling of single-arm cluster tools with chamber cleaning operations and wafer residency time constraint. IEEE Transactions on SEMICONDUCTOR MANUFACTURING., 31(2), 196–205.CrossRef
22.
Zurück zum Zitat Ge, X., Han, Q.-L., & Zhang, X.-M. (2017). Achieving cluster formation of multi agent systems under periodic sampling and communication delays. IEEE Transactions on Industrial Electronics, 65(4), 3417–3426.CrossRef Ge, X., Han, Q.-L., & Zhang, X.-M. (2017). Achieving cluster formation of multi agent systems under periodic sampling and communication delays. IEEE Transactions on Industrial Electronics, 65(4), 3417–3426.CrossRef
23.
Zurück zum Zitat Loscri, V., Morabito G., & Marano, S. (2005). A two levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE 62nd vehicular technology conference (pp. 1809–1813). Loscri, V., Morabito G., & Marano, S. (2005). A two levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE 62nd vehicular technology conference (pp. 1809–1813).
24.
Zurück zum Zitat Jain, A., & Goel, A. K. (2019). Energy efficient fuzzy routing protocol for wireless sensor networks. Wireless Personal Communications, 110, 1459–1474.CrossRef Jain, A., & Goel, A. K. (2019). Energy efficient fuzzy routing protocol for wireless sensor networks. Wireless Personal Communications, 110, 1459–1474.CrossRef
25.
Zurück zum Zitat Thomas, S., & Mathew, T. (2018). Intelligent path discovery for a mobile sink in wireless sensor network. Procedia Computer Science., 143, 749–756.CrossRef Thomas, S., & Mathew, T. (2018). Intelligent path discovery for a mobile sink in wireless sensor network. Procedia Computer Science., 143, 749–756.CrossRef
26.
Zurück zum Zitat Soni, S., & Bajpai, S. (2018). Energy-efficient clustering in wireless sensor network with mobile sink. In International conference on advanced computing networking and informatics (pp. 225–236). Soni, S., & Bajpai, S. (2018). Energy-efficient clustering in wireless sensor network with mobile sink. In International conference on advanced computing networking and informatics (pp. 225–236).
27.
Zurück zum Zitat Yu, S., Zhang, B., Li, C., & Mouftah, H. T. (2014). Routing protocols for wireless sensor networks with mobile sinks: A survey. IEEE Communications Magazine, 52(7), 150–157.CrossRef Yu, S., Zhang, B., Li, C., & Mouftah, H. T. (2014). Routing protocols for wireless sensor networks with mobile sinks: A survey. IEEE Communications Magazine, 52(7), 150–157.CrossRef
28.
Zurück zum Zitat Awan, K., Shah, P. A., Iqbal, K., & Gillani, S. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing., 3, 1–20. Awan, K., Shah, P. A., Iqbal, K., & Gillani, S. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing., 3, 1–20.
29.
Zurück zum Zitat Tazibt, C. Y., Bekhti, M., Djamah, T., Achir, N., & Boussetta, K. (2017). Wireless sensor network clustering for UAV-based data gathering. Wireless Days. Tazibt, C. Y., Bekhti, M., Djamah, T., Achir, N., & Boussetta, K. (2017). Wireless sensor network clustering for UAV-based data gathering. Wireless Days.
30.
Zurück zum Zitat Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., & Kim, H. J. (2019). Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors., 19(7), 1494.CrossRef Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., & Kim, H. J. (2019). Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors., 19(7), 1494.CrossRef
31.
Zurück zum Zitat Jafri, M. R., Javaid, N., Javaid, A., & Khan, Z. A. (2013). Maximizing the lifetime of multi-chain PEGASIS using sink mobility. World Applied Sciences Journal, 21(9), 1283–1289. Jafri, M. R., Javaid, N., Javaid, A., & Khan, Z. A. (2013). Maximizing the lifetime of multi-chain PEGASIS using sink mobility. World Applied Sciences Journal, 21(9), 1283–1289.
32.
Zurück zum Zitat Nakayama, H., Fadlullah, Z. M., Ansari, N., & Kato, N. (2011). A novel scheme for WSAN sinks mobility based on clustering and set packing techniques. IEEE Transactions on Automatic Control, 56(10), 2381–2389.MathSciNetCrossRef Nakayama, H., Fadlullah, Z. M., Ansari, N., & Kato, N. (2011). A novel scheme for WSAN sinks mobility based on clustering and set packing techniques. IEEE Transactions on Automatic Control, 56(10), 2381–2389.MathSciNetCrossRef
33.
Zurück zum Zitat Mottaghi, S., Zahabi, M. R., & (Feb, . (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU International Journal of Electronics and Communications, 69(2), 475–608.CrossRef Mottaghi, S., Zahabi, M. R., & (Feb, . (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU International Journal of Electronics and Communications, 69(2), 475–608.CrossRef
34.
Zurück zum Zitat Gal, Z., Korteby, M. A., & Dabbas, A. (2018). Impact of the delay tolerance in wireless sensor networks. In IEEE international conference on future IoT technologies. Gal, Z., Korteby, M. A., & Dabbas, A. (2018). Impact of the delay tolerance in wireless sensor networks. In IEEE international conference on future IoT technologies.
35.
Zurück zum Zitat Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.CrossRef Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.CrossRef
36.
Zurück zum Zitat Basumatary, H., & Singh, M. M. (2018). Multi clustered energy efficient routing algorithm with mobile sink node moving in a clockwise direction. In Proceedings of international conference on recent advancement on computer and communication (pp. 645–654). Basumatary, H., & Singh, M. M. (2018). Multi clustered energy efficient routing algorithm with mobile sink node moving in a clockwise direction. In Proceedings of international conference on recent advancement on computer and communication (pp. 645–654).
37.
Zurück zum Zitat Singh, M. M., & Basumatary, H. (2017). Lifetime analysis of wireless sensor network considering stay time and stay location of the sink. CSI Journal of Computing, 3(2), 1–8. Singh, M. M., & Basumatary, H. (2017). Lifetime analysis of wireless sensor network considering stay time and stay location of the sink. CSI Journal of Computing, 3(2), 1–8.
38.
Zurück zum Zitat Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.CrossRef Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.CrossRef
39.
Zurück zum Zitat Muhammad, Z., Saxena, N., Qureshi, I. M., & Ahn, C. W. (2017). Hybrid artificial bee colony algorithm for an energy efficient internet of things based on wireless sensor network. IETE Technical Review, 34(1), 39–51.CrossRef Muhammad, Z., Saxena, N., Qureshi, I. M., & Ahn, C. W. (2017). Hybrid artificial bee colony algorithm for an energy efficient internet of things based on wireless sensor network. IETE Technical Review, 34(1), 39–51.CrossRef
40.
Zurück zum Zitat Akbar, M., Javaid, N., Imran, M., Amjad, N., Khan, M. I., & Guizani, M. (2016). Sink mobility aware energy-efficient network integrated super heterogeneous protocol for WSNs. EURASIP Journal on Wireless Communications and Networking, 66, 1-19. Akbar, M., Javaid, N., Imran, M., Amjad, N., Khan, M. I., & Guizani, M. (2016). Sink mobility aware energy-efficient network integrated super heterogeneous protocol for WSNs. EURASIP Journal on Wireless Communications and Networking, 66, 1-19.
41.
Zurück zum Zitat Malavenda, C. S., Menichelli, F., & Olivieri, M. (2017). Narrowband delay tolerant protocols for WSN applications: Characterization and selection guide. In International conference on applications in electronics pervading industry, environment and society (pp. 109–121). Malavenda, C. S., Menichelli, F., & Olivieri, M. (2017). Narrowband delay tolerant protocols for WSN applications: Characterization and selection guide. In International conference on applications in electronics pervading industry, environment and society (pp. 109–121).
42.
Zurück zum Zitat Kumar, N., & Singh, Y. (2017). Handbook of research on advanced wireless sensor network applications, protocols, and architectures. In IGI global, 2017, chapter 4 (pp. 86–128). Kumar, N., & Singh, Y. (2017). Handbook of research on advanced wireless sensor network applications, protocols, and architectures. In IGI global, 2017, chapter 4 (pp. 86–128).
43.
Zurück zum Zitat Abdulhamid, Z. (2017). An efficient clustering method using weighting coefficients in homogeneous wireless sensor networks.Alexandria Engineering Journal, 57(2), 695–710. Abdulhamid, Z. (2017). An efficient clustering method using weighting coefficients in homogeneous wireless sensor networks.Alexandria Engineering Journal, 57(2), 695–710.
Metadaten
Titel
Clustering Based Two Dimensional Motion of Sink Node in Wireless Sensor Networks
verfasst von
Habila Basumatary
Arindam Debnath
Mrinal Kanti Deb Barma
Bidyut Kumar Bhattacharyya
Publikationsdatum
04.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08007-5

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt