Skip to main content
Erschienen in:

18.11.2020

Clustering Brain Signals: a Robust Approach Using Functional Data Ranking

verfasst von: Tianbo Chen, Ying Sun, Carolina Euan, Hernando Ombao

Erschienen in: Journal of Classification | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we analyze electroencephalograms (EEGs) which are recordings of brain electrical activity. We develop new clustering methods for identifying synchronized brain regions, where the EEGs show similar oscillations or waveforms according to their spectral densities. We treat the estimated spectral densities from many epochs or trials as functional data and develop clustering algorithms based on functional data ranking. The two proposed clustering algorithms use different dissimilarity measures: distance of the functional medians and the area of the central region. The performance of the proposed algorithms is examined by simulation studies. We show that, when contaminations are present, the proposed methods for clustering spectral densities are more robust than the mean-based methods. The developed methods are applied to two stages of resting state EEG data from a male college student, corresponding to early exploration of functional connectivity in the human brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Caiado, J., Crato, N., & Peña, D. (2006). A periodogram-based metric for time series classification. Computational Statistics & Data Analysis, 50(10), 2668–2684.MathSciNetCrossRef Caiado, J., Crato, N., & Peña, D. (2006). A periodogram-based metric for time series classification. Computational Statistics & Data Analysis, 50(10), 2668–2684.MathSciNetCrossRef
Zurück zum Zitat Euan, C., Ombao, H., & Ortega, J. (2018). The hierarchical spectral merger algorithm: a new time series clustering procedure. Journal of Classification. Euan, C., Ombao, H., & Ortega, J. (2018). The hierarchical spectral merger algorithm: a new time series clustering procedure. Journal of Classification.
Zurück zum Zitat Euán, C., Ombao, H., & Ortega, J. (2018). Spectral synchronicity in brain signals. Statistics in medicine, 37(19), 2855–2873.MathSciNetCrossRef Euán, C., Ombao, H., & Ortega, J. (2018). Spectral synchronicity in brain signals. Statistics in medicine, 37(19), 2855–2873.MathSciNetCrossRef
Zurück zum Zitat Fingelkurts, A.A., Fingelkurts, A.A., & Kähkönen, S. (2005). Functional connectivity in the brain—is it an elusive concept? Neuroscience & Biobehavioral Reviews, 28(8), 827–836.CrossRef Fingelkurts, A.A., Fingelkurts, A.A., & Kähkönen, S. (2005). Functional connectivity in the brain—is it an elusive concept? Neuroscience & Biobehavioral Reviews, 28(8), 827–836.CrossRef
Zurück zum Zitat Freyermuth, J.M., Ombao, H., & von Sachs, R. (2010). Tree-structured wavelet estimation in a mixed effects model for spectra of replicated time series. Journal of the American Statistical Association, 105(490), 634–646.MathSciNetCrossRef Freyermuth, J.M., Ombao, H., & von Sachs, R. (2010). Tree-structured wavelet estimation in a mixed effects model for spectra of replicated time series. Journal of the American Statistical Association, 105(490), 634–646.MathSciNetCrossRef
Zurück zum Zitat Gao, X., Shahbaba, B., Fortin, N., & Ombao, H. (2018). Evolutionary state-space model and its application to time-frequency analysis of local field potentials. arXiv:1610.07271. Gao, X., Shahbaba, B., Fortin, N., & Ombao, H. (2018). Evolutionary state-space model and its application to time-frequency analysis of local field potentials. arXiv:1610.​07271.
Zurück zum Zitat Hasenstab, K., Sugar, C., Telesca, D., Jeste, S., & Şentürk, D. (2016). Robust functional clustering of ERP data with application to a study of implicit learning in autism. Biostatistics, 17(3), 484–498.MathSciNetCrossRef Hasenstab, K., Sugar, C., Telesca, D., Jeste, S., & Şentürk, D. (2016). Robust functional clustering of ERP data with application to a study of implicit learning in autism. Biostatistics, 17(3), 484–498.MathSciNetCrossRef
Zurück zum Zitat Kakizawa, Y., Shumway, R.H., & Taniguchi, M. (1998). Discrimination and clustering for multivariate time series. Journal of the American Statistical Association, 93(441), 328–340.MathSciNetCrossRef Kakizawa, Y., Shumway, R.H., & Taniguchi, M. (1998). Discrimination and clustering for multivariate time series. Journal of the American Statistical Association, 93(441), 328–340.MathSciNetCrossRef
Zurück zum Zitat López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104(486), 718–734.MathSciNetCrossRef López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104(486), 718–734.MathSciNetCrossRef
Zurück zum Zitat Maharaj, E.A., & D’Urso, P. (2012). Wavelets-based clustering of multivariate time series. Fuzzy Sets and Systems, 193, 33–61.MathSciNetCrossRef Maharaj, E.A., & D’Urso, P. (2012). Wavelets-based clustering of multivariate time series. Fuzzy Sets and Systems, 193, 33–61.MathSciNetCrossRef
Zurück zum Zitat Montero, P., Vilar, J.A., & et al. (2014). Tsclust: an r package for time series clustering. Journal of Statistical Software, 62(1), 1–43.CrossRef Montero, P., Vilar, J.A., & et al. (2014). Tsclust: an r package for time series clustering. Journal of Statistical Software, 62(1), 1–43.CrossRef
Zurück zum Zitat Ngo, D., Sun, Y., Genton, M.G., Wu, J., Srinivasan, R., Cramer, S.C., & Ombao, H. (2015). An exploratory data analysis of electroencephalograms using the functional boxplots approach. Frontiers in Neuroscience, p. 9. Ngo, D., Sun, Y., Genton, M.G., Wu, J., Srinivasan, R., Cramer, S.C., & Ombao, H. (2015). An exploratory data analysis of electroencephalograms using the functional boxplots approach. Frontiers in Neuroscience, p. 9.
Zurück zum Zitat Nguyen, X.V., Epps, J., & Bailey, J. (2009). Information theoretic measures for clusterings comparison: is a correction for chance necessary? p. 135. Nguyen, X.V., Epps, J., & Bailey, J. (2009). Information theoretic measures for clusterings comparison: is a correction for chance necessary? p. 135.
Zurück zum Zitat Ombao, H., Raz, J.A., Strawderman, R.L., & Sachs, R.V. (2001). A simple generalised crossvalidation method of span selection for periodogram smoothing. Biometrika, 88(4), 1186–1192.MathSciNetCrossRef Ombao, H., Raz, J.A., Strawderman, R.L., & Sachs, R.V. (2001). A simple generalised crossvalidation method of span selection for periodogram smoothing. Biometrika, 88(4), 1186–1192.MathSciNetCrossRef
Zurück zum Zitat Orhan, U., Hekim, M., & Ozer, M. (2011). EEG Signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475–13481.CrossRef Orhan, U., Hekim, M., & Ozer, M. (2011). EEG Signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475–13481.CrossRef
Zurück zum Zitat Panuccio, A., Bicego, M., & Murino, V. (2002). A hidden Markov model-based approach to sequential data clustering. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages 734–743. Springer. Panuccio, A., Bicego, M., & Murino, V. (2002). A hidden Markov model-based approach to sequential data clustering. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages 734–743. Springer.
Zurück zum Zitat Purdon, P.L., Pierce, E.T., Mukamel, E.A., Prerau, M.J., Walsh, J.L., Wong, K.F.K., Salazar-Gomez, A.F., Harrell, P.G., Sampson, A.L., Cimenser, A., Ching, S., Kopell, N.T., e Tavares-Stoeckela, C., Habeeb, K., Merhar, R., & Brown, E.N. (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proceedings of the National Academy of Sciences, 110(12), E1142–E1151.CrossRef Purdon, P.L., Pierce, E.T., Mukamel, E.A., Prerau, M.J., Walsh, J.L., Wong, K.F.K., Salazar-Gomez, A.F., Harrell, P.G., Sampson, A.L., Cimenser, A., Ching, S., Kopell, N.T., e Tavares-Stoeckela, C., Habeeb, K., Merhar, R., & Brown, E.N. (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proceedings of the National Academy of Sciences, 110(12), E1142–E1151.CrossRef
Zurück zum Zitat Rutkowski, T.M., Mandic, D.P., Cichocki, A., & Przybyszewski, A.W. (2010). EMD approach to multichannel eeg data—the amplitude and phase components clustering analysis. Journal of Circuits Systems, and Computers, 19(01), 215–229.CrossRef Rutkowski, T.M., Mandic, D.P., Cichocki, A., & Przybyszewski, A.W. (2010). EMD approach to multichannel eeg data—the amplitude and phase components clustering analysis. Journal of Circuits Systems, and Computers, 19(01), 215–229.CrossRef
Zurück zum Zitat Shumway, R.H., & Stoffer, D.S. (2016). Time series analysis and its applications: with R examples. Springer Science & Business Media. Shumway, R.H., & Stoffer, D.S. (2016). Time series analysis and its applications: with R examples. Springer Science & Business Media.
Zurück zum Zitat Sun, Y. (2011). Functional boxplots. Journal of Computational and Graphical Statistics. Sun, Y. (2011). Functional boxplots. Journal of Computational and Graphical Statistics.
Zurück zum Zitat Sun, Y., & Genton, M.G. (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. Environmetrics, 23(1), 54–64.MathSciNetCrossRef Sun, Y., & Genton, M.G. (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. Environmetrics, 23(1), 54–64.MathSciNetCrossRef
Zurück zum Zitat Vilar, J.A., & Pértega, S. (2004). Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach. Journal of Nonparametric Statistics, 16(3-4), 443–462.MathSciNetCrossRef Vilar, J.A., & Pértega, S. (2004). Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach. Journal of Nonparametric Statistics, 16(3-4), 443–462.MathSciNetCrossRef
Zurück zum Zitat Viqueira, M., Zapirain, B.G., & Zorrilla, A.M. (2013). Ocular movement and cardiac rhythm control using EEG techniques. In Medical Imaging in Clinical Practice. InTech. Viqueira, M., Zapirain, B.G., & Zorrilla, A.M. (2013). Ocular movement and cardiac rhythm control using EEG techniques. In Medical Imaging in Clinical Practice. InTech.
Zurück zum Zitat Wahba, G. (1980). Automatic smoothing of the log periodogram. Journal of the American Statistical Association, 75(369), 122–132.CrossRef Wahba, G. (1980). Automatic smoothing of the log periodogram. Journal of the American Statistical Association, 75(369), 122–132.CrossRef
Zurück zum Zitat Wu, J., Srinivasan, R., Kaur, A., & Cramer, S.C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84–90.CrossRef Wu, J., Srinivasan, R., Kaur, A., & Cramer, S.C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84–90.CrossRef
Metadaten
Titel
Clustering Brain Signals: a Robust Approach Using Functional Data Ranking
verfasst von
Tianbo Chen
Ying Sun
Carolina Euan
Hernando Ombao
Publikationsdatum
18.11.2020
Verlag
Springer US
Erschienen in
Journal of Classification / Ausgabe 3/2021
Print ISSN: 0176-4268
Elektronische ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-020-09382-1